[1] 王辅臣, 于广锁, 龚欣, 等. 大型煤气化技术的研究与发展[J]. 化工进展, 2009, 28(2):173-180. WANG Fuchen, YU Guangsuo, GONG Xin, et al. Research and development of large-scale coal gasification technology[J]. Chemical Industry and Engineering Progress, 2009, 28(2):173-180.
[2] PAVLISH J H, HAMRE L L, YE Z. Mercury control technologies for coal combustion and gasification systems[J]. Fuel, 2010, 89(4):838-847.
[3] STEPHENS D R. Underground coal gasification:a leading contender in the synfuels industry[R]. US:Lawrence Lirermore National Lab., CA, 1981-10-27.
[4] KIM K, ASAOKA S, YAMAMOTO T, et al. Mechanisms of hydrogen sulfide removal with steel making slag[J]. Environmental Science & Technology, 2012, 46(18):10169-10174.
[5] LIU T, XUE L, GUO X. Study of Hg0 removal characteristics on Fe2O3 with H2S[J]. Fuel, 2015, 160:189-195.
[6] QIU K, ZHOU J, QI P, et al. Experimental study on ZnO-TiO2 sorbents for the removal of elemental mercury[J]. Korean Journal of Chemical Engineering, 2017(4):1-7.
[7] 游淑淋, 周劲松, 侯文慧, 等. 锰改性活性焦脱除合成气中单质汞的影响因素[J]. 燃料化学学报, 2014, 42(11):1324-1331. YOU Shulin, ZHOU Jinsong, HOU Wenhui, et al. Factors influencing the removal of elemental mercury by Mn-AC sorbent in syngas[J]. Journal of Fuel Chemistry and Technology, 2014, 42(11):1324-1331.
[8] 侯文慧, 周劲松, 张义, 等. H2S对氧化铁脱除煤气中单质汞的影响[J]. 中国电机工程学报, 2013, 33(23):92-98. HOU Wenhui, ZHOU Jinsong, ZHANG Yi, et al. Effect of H2S on elemental mercury removal in coal gas by Fe2O3[J]. Proceedings of the CSEE, 2013, 33(23):92-98.
[9] HUA X, ZHOU J, LI Q, et al. Gas-phase elemental mercury removal by CeO2 impregnated activated coke[J]. Energy & Fuels, 2015, 24(10):5426-5431.
[10] IMAMURA S, SHONO M, OKAMOTO N, et al. Effect of cerium on the mobility of oxygen on manganese oxides[J]. Applied Catalysis A:General, 1996, 142(2):279-288.
[11] LING L, ZHAO Z, ZHAO S, et al. Effects of metals doping on the removal of Hg and H2S over ceria[J]. Applied Surface Science, 2017, 403:500-508.
[12] LIU Y, WANG Y, WANG H, et al. Catalytic oxidation of gas-phase mercury over Co/TiO catalysts prepared by sol-gel method[J]. Catalysis Communications, 2011, 12(14):1291-1294.
[13] XU Xuyan, LI Jinjun, HAO Zhengping. CeO2-Co3O4 catalysts for CO oxidation[J]. Journal of Rare Earths, 2006, 24(2):172-176.
[14] LIOTTA L F, CARLO G D, PANTALEO G, et al. Co3O4/CeO2 composite oxides for methane emissions abatement:relationship between Co3O4-CeO2 interaction and catalytic activity[J]. Applied Catalysis B:Environmental, 2006, 66(3):217-227.
[15] RAJSKA M, WÓJTOWICZ B, KLITA L, et al. The use of CeO2-Co3O4 oxides as a catalyst for the reduction of N2O emission[J]. E3S web of Conferences, 2016, 10:00130. doi:10.1051/e3sconf/20161000130.
[16] WU H, LI C, ZHAO L, et al. Removal of gaseous elemental mercury by cylindrical activated coke loaded with CoOx-CeO2 from simulated coal combustion flue gas[J]. Energy & Fuels, 2015, 29(10):6747-6757.
[17] ZHOU J S, HOU W H, QI P, et al. CeO2-TiO2 sorbents for the removal of elemental mercury from syngas[J]. Environmental Science & Technology, 2013, 47(17):10056-10062.
[18] SUN G, KÜRTI J, RAJCZY P, et al. Performance of the Vienna ab initio simulation package (VASP) in chemical applications[J]. Journal of Molecular Structure Theochem, 2003, 624(1/2/3):37-45.
[19] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865.
[20] BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B:Condensed Matter, 1994, 50(24):17953-17979.
[21] PELES A. GGA+U method from first principles:application to reduction-oxidation properties in ceria-based oxides[J]. Journal of Materials Science, 2012, 47(21):7542-7548.
[22] NOLAN M, GRIGOLEIT S, SAYLE D C, et al. Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria[J]. Surface Science, 2005, 576(1):217-229.
[23] 李对春. CO在部分过渡金属及氧化物表面吸附和反应的第一原理研究[D]. 太原:太原理工大学, 2011. LI Duichun. The first principles study of CO adsorption and reaction on transition metal and metal oxide surfaces[D]. Taiyuan:Taiyuan University of Technology, 2011.
[24] HENKELMAN G. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. Journal of Chemical Physics, 2000, 113(22):9901-9904.
[25] KUMMERLE E A, HEGER G. The structures of C-Ce2O3+delta, Ce7O12, and Ce11O20[J]. Journal of Solid State Chemistry, 1999, 147(2):485-500.
[26] CONESA J. Computer modeling of surfaces and defects on cerium dioxide[J]. Surface Science, 1995, 339(3):337-352.
[27] LIN B, LIU Y, LAN H, et al. Effect of ceria morphology on the catalytic activity of Co/CeO2 catalyst for ammonia synthesis[J]. Catalysis Communications, 2017, 101:15-19.
[28] 侯文慧. 模拟煤气条件下金属氧化物吸附脱除单质汞的机理研究[D]. 杭州:浙江大学, 2015. HOU Wenhui. Mechanism study on the removal of elemental mercury from simulated syngas over metal oxides sorbents[D]. Hangzhou:Zhejiang University, 2015.
[29] WANG P, SU S, XIANG J, et al. Catalytic oxidation of Hg0 by MnOx-CeO2/γ-Al2O3 catalyst at low temperatures[J]. Chemosphere, 2014, 101:49. |