[1] NOVOSELOV K, GEIM A, MOROZOV S, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306:666-669.
[2] LEVY N, BURKE S A, MEAKER K L, et al. Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles[J]. Science, 2010, 329:544-547.
[3] ZHANG L L, ZHOU R, ZHAO X S. Graphene-based materials as supercapacitor electrodes[J]. Journal of Materials Chemistry, 2010, 20:5983-5992.
[4] YOO E J, KIM J, HOSONO E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Letters, 2008, 8:2277-2282.
[5] CHEN Z, JANG W, BAO W. Thermal contact resistance between graphene and silicon dioxide[J]. Applied Physics Letters, 2009, 95:161910.
[6] KIM J M, KIM T, AHN H S. Experimental study of transient boiling characteristics on three-dimensional reduced graphene oxide networks[J]. Experimental Thermal and Fluid Science, 2014, 59:51-55.
[7] KIM J M, KIM J H, PARK S C, et al. Nucleate boiling in graphene oxide colloids:morphological change and critical heat flux enhancement[J]. International Journal of Multiphase Flow, 2016, 85:209-222.
[8] AN S, KIM D Y, LEEJ G, JO H S, et.al. Supersonically sprayed reduced graphene oxide film to enhance critical heat flux in pool boiling[J]. International Journal of Heat and Mass Transfer, 2016, 98:124-130.
[9] PARK S S, KIM Y H, JEON Y H, et al. Effects of spray-deposited oxidized multi-wall carbon nanotubes and graphene on pool-boiling critical heat flux enhancement[J]. Journal of Industrial and Engineering Chemistry, 2015, 24:276-283.
[10] SEO H, CHU J H, KWON S Y, et al. Pool boiling CHF of reduced graphene oxide, graphene, and SiC-coated surfaces under highly wettable FC-72[J]. International Journal of Heat and Mass Transfer, 2015, 82:490-502.
[11] AHN H S, KIM J M, KIM T, et al. Enhanced heat transfer is dependent on thickness of graphene films:the heat dissipation during boiling[J]. Scientific Reports, 2014, 4:6276.
[12] KOUSALYA A S, KUMAR A, PAUL R, et al. Pool boiling CHF of reduced graphene oxide, graphene, and SiC-coated surfaces under highly wettable FC-72[J]. Corrosion Science, 2013, 69:5-10.
[13] PROTICH Z, SANTHANAM K S V, JAIKUMAR A, et al. Electrochemical deposition of copper in graphene quantum dot bath:pool boiling enhancement[J]. Journal of the Electrochemical Society, 2016,163(6):166-172.
[14] LIU H T, WANG X X, JI H M, Fabrication of lotus-leaf-like superhydrophobic surfaces via Ni-based nano-composite electro-brush plating[J]. Applied Surface Science, 2014, 288:341-348.
[15] 柴永志, 张伟, 李亚, 等. 非均匀润湿性微通道表面池沸腾换热特性[J]. 化工学报, 2017, 68(5):1852-1859. CHAI Y Z, ZHANG W, LI Y, et al. Pool boiling heat transfer on heterogeneous wetting microchannel surfaces[J]. CIESC Journal, 2017, 68(5):1852-1859.
[16] KUANG D, XU L Y, LIU L, et al. Graphene-nickel composites[J]. Applied Surface Science, 2013, 273:484-490.
[17] 郑晓欢, 纪献兵, 王野, 等. 超亲/疏水性表面池沸腾传热研究[J]. 化工进展, 2016, 35(12):3793-3798. ZHENG X H, JI X B, WANG Y, et al. Pool boiling heat transfer on superhydrophilic and superhydrophobic surfaces[J]. Chemical Industry and Engineering Progress, 2016, 35(12):3793-3798.
[18] HSU Y Y. On the size range of active nucleation cavities on a heating surface[J]. Journal of Heat Transfer:Transactions of the ASME, 1962, 84:207-213.
[19] BASU N, WARRIER G R, DHIR V K. Onset of nucleate boiling and active nucleation site density during subcooled flow boiling[J]. Journal of Heat Transfer:Transactions of the ASME, 2002, 124:717-728.
[20] HSU C C, CHEN P H. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14):3713-3719. |