化工进展 ›› 2015, Vol. 34 ›› Issue (11): 3846-3851.DOI: 10.16085/j.issn.1000-6613.2015.11.004

• 化工过程与装备 • 上一篇    下一篇

蒸发/冷凝段长度比对脉动热管性能的影响

汪健生, 马赫   

  1. 天津大学机械工程学院中低温热能高效利用教育部重点实验室, 天津 300072
  • 收稿日期:2015-05-06 修回日期:2015-06-03 出版日期:2015-11-05 发布日期:2015-11-05
  • 通讯作者: 汪健生(1964—),男,博士,副教授,研究方向为计算传热学与计算流体力学。E-mailjsw@tju.edu.cn。
  • 作者简介:汪健生(1964—),男,博士,副教授,研究方向为计算传热学与计算流体力学。E-mailjsw@tju.edu.cn。

Influences of the ratio of evaporation section length to condensation section length on the performance of pulsating heat pipe

WANG Jiansheng, MA He   

  1. Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, MOE, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
  • Received:2015-05-06 Revised:2015-06-03 Online:2015-11-05 Published:2015-11-05

摘要: 脉动热管是一种结构简单、传热性能突出的新型传热元件,由于运行过程涉及沸腾与冷凝及两相流动,传热及流动机理复杂,因此目前对其运行过程的相关数值模拟尚不成熟。本文采用VOF(volume of fluid)模型,考虑表面张力和壁面接触角的影响,采用数值模拟软件对单环路脉动热管的流动及传热特性进行了研究。数值模拟中,单环路脉动热管的充液率为40%~60%,热端加热功率为10~40W,探讨了热管蒸发段与冷凝段长度比对热管启动及换热性能的影响,并分析了脉动热管运行时流型特征。结果表明:随蒸发段和冷凝段长度比值增大,脉动热管启动时间缩短,且换热性能有一定提高;但在低充液率时,容易出现“干烧”现象。在低加热功率时,脉动热管的启动方式为温度突变式;而在高加热功率时,其启动方式为温度渐变式。此外,通过蒸发段的温度振荡特征可以确定脉动热管的启动时间。

关键词: 脉动热管, 数值模拟, 长度比值, 启动时间, 热阻

Abstract: Pulsating heat pipe(PHP) is a high-efficiency heat transfer device with simple structure and excellent thermal performances. With phenomena such as boiling, condensation and two-phase flow, the mechanism of heat transfer and flow is quite complex and the relevant numerical investigation still needs to improve. A two-dimensional single loop closed-loop pulsating heat pipe(CLPHP) was numerically investigated by CFD software in this research. The start-up characteristics and thermal performances of CLPHP with different length ratios of the evaporation section to the condensation one were studied by volume of fluid(VOF) approach. Considering the effects of surface tension and wall contact angle, the continuum surface force model was adopted. The input power(ranged from 10 W to 40 W) and filling ratio(40%, 50%, and 60%)were applied in present numerical investigation. The motions of creation and oscillation of bubbles and vapor/liquid plugs were discussed. The numerical results were compared with experimental data of available literature. The results showed that the start-up time and the thermal resistance of CLPHP could be reduced when the input power was increased on the evaporation section. For the same filling ratio and input power, reducing the length of condensation section within a suitable range was helpful to accelerate the start-up of CLPHP and decrease the thermal resistance, while the “dry-out” occurred easily at low filling ratio. Two types of start-up, the temperature abrupt change at lower input power and the temperature gradual change at higher input power, were observed as well. The temperature oscillation feature at evaporation section can be used to determine the start-up time of CLPHP.

Key words: pulsating heat pipe, numerical simulation, length ratio, start-up time, thermal resistance

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn