[1] Pelaez-Samaniego M R, Garcia-Perez M, Cortez L B, et al. Improvements of Brazilian carbonization industry as part of the creation of a global biomass economy[J]. Renewable and Sustainable Energy Reviews, 2008, 12(4): 1063-1086. [2] Ronaldo Santos Sampaio, Jeremy Jones, Jose Batista. Hot metal strategies for the EAF industry[J]. Iron Steel Technology, 2009, 6(2): 31-37. [3] Ivan Tomaselli. Forests and Energy in Developing Countries[R]. Rome: FAO, 2007. [4] Rosillo-Calle F, de Rezende M A A, Furtado P, et al. The Charcoal Dilemma: Finding a Sustainable Solution for Brazilian Industry[M]. London: Intermediate Technology Publications, 1996. [5] Antal M J, Mochidzuki K, Paredes L S. Flash carbonization of biomass[J]. Ind. Eng. Chem. Res., 2003, 42(16): 3690-3699. [6] Nunoura T, Wade S R, Bourke J, et al. Studies of the flash carbonization process. 1. Propagation of the flaming pyrolysis reaction and performance of a catalytic afterburner[J]. Ind. Eng. Chem. Res., 2006, 45(2): 585-599. [7] Wade S R, Nunoura T, Antal M J. Studies of the flash carbonization process. 2. Violent ignition behavior of pressurized packed beds of biomass: A factorial study[J]. Ind. Eng. Chem. Res., 2006, 45(10): 3512-3519. [8] Antal M J, Gronli M. The art, science, and technology of charcoal production[J]. Ind. Eng. Chem. Res., 2003, 42(8): 1619-1640. [9] 潘萌娇, 孙姣, 贺强, 等. 热解终温和加热速率对棉杆热解生物炭的影响研究[J]. 河北工业大学学报, 2014, 43(5): 60-66. [10] Elyounssi Khalid, Blin Joel, Halim Mohammed, et al. High-yield charcoal production by two-step pyrolysis[J]. J. Anal. Appl. Pyrolysis, 2010, 87(1): 138-143. [11] Adetoyese Olajire Oyedun, Ka Leung Lam, Chi Wai Hui. Charcoal production via multistage pyrolysis[J]. Chinese Journal of Chemical Engineering, 2012, 20(3): 455-460. [12] 戚红梅, 惠世恩, 崔大伟, 等. 升温速率和水分含量对木屑热解过程和特性的影响[J]. 可再生能源, 2009, 27(3): 77-80. [13] 苏毅, 王芸, 吴文广, 等. 水分对稻杆热解特性的影响[J]. 中国电机工程学报, 2010, 30(26): 107-112. [14] 崔亚兵, 陈晓平, 顾利锋. 常压及加压条件下生物质热解特性的热重研究[J]. 锅炉技术, 2004, 35(4): 12-15. [15] Rousset P, Figueiredo C, de Souza M, et al. Pressure effect on the quality of eucalyptus wood charcoal for the steel industry: A statistical analysis approach[J]. Fuel Processing Technology, 2011, 92(10): 1890-1897. [16] 董庆, 张书平, 张理, 等. 竹材热解动力学特性分析[J]. 过程工程学报, 2015, 15(1): 89-93. [17] 闫智培, 李十中. 全国农村清洁能源与低碳技术学术研讨会论文集[C]. 郑州: 中国农业工程学会, 2011. [18] Maheshwari R C, Chaturvedi Pradeep. Bio-energy for Rural Energisation[M]. New Delhi: Concept Publishing Company, 1997. [19] 石海波, 孙姣, 陈文义, 等. 生物质热解炭化反应设备研究进展[J]. 化工进展, 2012, 31(10): 2130-2136. [20] 邹吉华, 邹吉红, 王志伟. 热解法处理生物质废渣的最新技术[J]. 北方环境, 2000(4): 58-60. [21] 马元庚. 介绍一种移动式炭化炉[J]. 林产化工通讯, 1993(4): 24-26. [22] 刘宝庆, 黄博林, 郑毅骏, 等. 一种废木屑连续炭化炉: 中国, 201420615776.X[P]. 2015-01-28. [23] Food And Agriculture Organization of the United Nation. Industrial Charcoal Making[M]. Rome: Food & Agriculture org., 1986. [24] Antal M J, Allen S G, Dai X, et al. Attainment of the theoretical yield of carbon from biomass[J]. Ind. Eng. Chem. Res., 2000, 39(11): 4024-4031. [25] Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems[J]. Mitig. Adapt. Strat. Glob., 2006, 11(2): 395-419. [26] 杨海平, 陈汉平, 晏蓉, 等. 温度对生物质固定床热解影响的研究明[J]. 太阳能学报, 2007, 28(10): 1152-1157. [27] Fassinou W F, van de Steene L, Toure S, et al. Pyrolysis of Pinus pinaster in a two-stage gasifier: Influence of processing parameters and thermal cracking of tar[J]. Fuel Process Technology, 2009, 90(1): 75-90. [28] 肖瑞瑞, 陈雪莉, 周志杰, 等. 温度对生物质热解产物有机结构的影响[J]. 太阳能学报, 2010, 31(4): 491-496. [29] 王秦超, 卢平, 黄震, 等. 生物质低温热解炭化特性的实验研究[J]. 中国电机工程学报, 2012, 32(12): 121-126. [30] Koufopanos C A, Papayannakos N, Maschio G, et al. Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects[J]. Can. J. Chem. Eng., 1991, 69(4): 907-915. [31] Antal Michael Jerry, Croiset Eric, Dai Xiangfeng, et al. High-yield biomass charcoal[J]. Energy & Fuels, 1996, 10(3): 652-658. [32] 王茹, 侯书林, 赵立欣, 等. 生物质热解炭化的关键影响因素分析[J]. 可再生能源, 2013, 31(6): 90-95. [33] 江茂生, 黄彪. 木炭粉胶合制成型燃料炭的研究[J]. 林产化学与工业, 2003, 23(4): 79-82. |