化工进展 ›› 2025, Vol. 44 ›› Issue (10): 5652-5662.DOI: 10.16085/j.issn.1000-6613.2025-0070
• 化工过程与装备 • 上一篇
收稿日期:2025-01-10
修回日期:2025-03-01
出版日期:2025-10-25
发布日期:2025-11-10
通讯作者:
焦波
作者简介:赵书艺(2000—),女,硕士研究生,研究方向为脉动热管强化传热。E-mail:18764480228m0@sina.cn。
基金资助:
ZHAO Shuyi(
), ZHAO Hongkun, BU Zhicheng, JIAO Bo(
)
Received:2025-01-10
Revised:2025-03-01
Online:2025-10-25
Published:2025-11-10
Contact:
JIAO Bo
摘要:
随着高温超导等低温技术的快速发展,脉动热管作为一种高效换热元件在液氮温区的应用逐渐受到关注。对于较长距离和冷热两端不共面的应用背景,本文利用计算流体力学(computational fluid dynamics,CFD)对脉动热管元件建立三维数值模型,并用流体体积(volume of fluid,VOF)方法模拟气液两相流。首先对绝热段长度分别为22mm、50mm和100mm的脉动热管在液氮温区的热性能进行对比研究,结果表明蒸发段和冷凝段长度不变,增加绝热段长度时,其表现出更高的热传导能力,同时潜热传热量也会增大。此外,针对绝热段长度为50mm脉动热管,分析了三种尺寸L形结构的运行特性,发现仅蒸发段水平放置,以及绝热段1/2与蒸发段一起水平放置时可成功启动;但蒸发段和绝热段全部水平放置时,管内始终处于下气上液分布状态,从而未能启动。研究结果为脉动热管在复杂环境中的应用提供了参考。
中图分类号:
赵书艺, 赵宏坤, 卜治丞, 焦波. 不同绝热段长度及L形结构对液氮脉动热管影响的模拟[J]. 化工进展, 2025, 44(10): 5652-5662.
ZHAO Shuyi, ZHAO Hongkun, BU Zhicheng, JIAO Bo. Simulation on the influence of different adiabatic length and L-shape structure on pulsating heat pipes with liquid nitrogen[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5652-5662.
| 文献 | 工质 | 蒸发段长度(Le) | 绝热段长度(La) | 冷凝段长度(Lc) | 加热功率 | 热阻最低工况 |
|---|---|---|---|---|---|---|
| Czajkowski等[ | 水 | 265mm | 500mm 750mm 1000mm | 355mm | 0~2kW | Q<2kW,Rmin:La=1000mm |
| Bao等[ | 水 | 60mm | 60mm 120mm 180mm 240mm | 60mm | 20~80kW | Q<25W,Rmin:La=240mm |
| Fonseca等[ | 氦 | 30mm | 300mm 1000mm | 90mm | 0~3W | Q<0.26W,Rmin:La=1000mm |
| Kammuang等[ | R123 | 150mm | 300mm 450mm | 355mm | 5000~35000W/m² | Q=Q,Rmin:La=300mm |
| Sukchana等[ | R123 | 100mm | 300mm 500mm 700mm | 100mm | 2~10kW/m² | q=5.92kW/m2,Rmin:La=300mm |
| Gan等[ | 液氮 | 60mm | 100mm 500mm | 60mm | 2~5W | Q<1.5W,Rmin:La=100mm |
表1 绝热段长度变化文献汇总
| 文献 | 工质 | 蒸发段长度(Le) | 绝热段长度(La) | 冷凝段长度(Lc) | 加热功率 | 热阻最低工况 |
|---|---|---|---|---|---|---|
| Czajkowski等[ | 水 | 265mm | 500mm 750mm 1000mm | 355mm | 0~2kW | Q<2kW,Rmin:La=1000mm |
| Bao等[ | 水 | 60mm | 60mm 120mm 180mm 240mm | 60mm | 20~80kW | Q<25W,Rmin:La=240mm |
| Fonseca等[ | 氦 | 30mm | 300mm 1000mm | 90mm | 0~3W | Q<0.26W,Rmin:La=1000mm |
| Kammuang等[ | R123 | 150mm | 300mm 450mm | 355mm | 5000~35000W/m² | Q=Q,Rmin:La=300mm |
| Sukchana等[ | R123 | 100mm | 300mm 500mm 700mm | 100mm | 2~10kW/m² | q=5.92kW/m2,Rmin:La=300mm |
| Gan等[ | 液氮 | 60mm | 100mm 500mm | 60mm | 2~5W | Q<1.5W,Rmin:La=100mm |
| 径向网格数 | 热阻R/K·W-1 |
|---|---|
| 4×6=24 | 1.10716 |
| 6×9=54 | 1.15657 |
| 8×12=96 | 1.13118 |
| 4×6=24 | 1.14657 |
表2 不同径向网格数下的热阻比较
| 径向网格数 | 热阻R/K·W-1 |
|---|---|
| 4×6=24 | 1.10716 |
| 6×9=54 | 1.15657 |
| 8×12=96 | 1.13118 |
| 4×6=24 | 1.14657 |
| 轴向网格高度/mm | 热阻R/K·W-1 | 网格数量 |
|---|---|---|
| 0.2 | 1.09172 | 142954 |
| 0.4 | 1.07485 | 254251 |
| 0.6 | 1.10632 | 336652 |
| 1 | 1.13012 | 396522 |
| 1.5 | 1.42852 | 563652 |
| 2.0 | 1.51969 | 618632 |
表3 不同轴向网格高度热阻比较
| 轴向网格高度/mm | 热阻R/K·W-1 | 网格数量 |
|---|---|---|
| 0.2 | 1.09172 | 142954 |
| 0.4 | 1.07485 | 254251 |
| 0.6 | 1.10632 | 336652 |
| 1 | 1.13012 | 396522 |
| 1.5 | 1.42852 | 563652 |
| 2.0 | 1.51969 | 618632 |
| 绝热段长度 | 计算至准稳态所需时间(CPU: AMD EPYC 7742) |
|---|---|
| 22mm | 4天零18小时(8核) |
| 50mm | 8天零15小时(8核) |
| 100mm | 11天零6小时(10核) |
表4 模拟计算至准稳态的耗时
| 绝热段长度 | 计算至准稳态所需时间(CPU: AMD EPYC 7742) |
|---|---|
| 22mm | 4天零18小时(8核) |
| 50mm | 8天零15小时(8核) |
| 100mm | 11天零6小时(10核) |
| 充液率 | 各段长度 | 加热功率 | 弯头数 | 通道尺寸 | ||
|---|---|---|---|---|---|---|
| 53% | Le=13mm | La=22mm, La=50mm, La=100mm | Lc=15mm | 4~8W | 5 | 长1mm,宽0.5mm |
| 6~8W | ||||||
表5 数值模拟工况
| 充液率 | 各段长度 | 加热功率 | 弯头数 | 通道尺寸 | ||
|---|---|---|---|---|---|---|
| 53% | Le=13mm | La=22mm, La=50mm, La=100mm | Lc=15mm | 4~8W | 5 | 长1mm,宽0.5mm |
| 6~8W | ||||||
| 参数 | 实验值 | 模拟值 |
|---|---|---|
| 蒸发段温度T/K | 84.8 | 84.4 |
| 85.9 | 85.7 | |
| 87.0 | 86.9 | |
| 88.0 | 87.9 | |
| 89.8 | 89.0 | |
| 热阻R/K·W-1 | 0.17 | 0.15 |
| 0.16 | 0.15 | |
| 0.15 | 0.15 | |
| 0.17 | 0.16 | |
| 0.18 | 0.17 |
表6 La=22mm的PHP实验与模拟数据对比
| 参数 | 实验值 | 模拟值 |
|---|---|---|
| 蒸发段温度T/K | 84.8 | 84.4 |
| 85.9 | 85.7 | |
| 87.0 | 86.9 | |
| 88.0 | 87.9 | |
| 89.8 | 89.0 | |
| 热阻R/K·W-1 | 0.17 | 0.15 |
| 0.16 | 0.15 | |
| 0.15 | 0.15 | |
| 0.17 | 0.16 | |
| 0.18 | 0.17 |
| [1] | AKACHI H. Structure of a heat pipe: US4921041[P]. 1990-05-01. |
| [2] | ALHUYI NAZARI Mohammad, AHMADI Mohammad H, GHASEMPOUR Roghayeh, et al. A review on pulsating heat pipes: From solar to cryogenic applications[J]. Applied Energy, 2018, 222: 475-484. |
| [3] | FAZLI Mahyar, ABTAHI MEHRJARDI Seyed ALI, MAHMOUDI Ashkan, et al. Advancements in pulsating heat pipes: Exploring channel geometry and characteristics for enhanced thermal performance[J]. International Journal of Thermofluids, 2024, 22: 100644. |
| [4] | HAN Xiaohong, WANG Xuehui, ZHENG Haoce, et al. Review of the development of pulsating heat pipe for heat dissipation[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 692-709. |
| [5] | YANG Chen, TAO Qiuhua, ZHENG Jianwen, et al. Thermal evaluation of photovoltaic panels combined pulsating heat pipe with phase change materials: Numerical study and experimental validation[J]. Energy and Buildings, 2024, 303: 113806. |
| [6] | MUSHAN Sagar G, DESHMUKH Vaibhav N. A review of pulsating heat pipes encompassing their dominant factors, flexible structure, and potential applications[J]. International Journal of Green Energy, 2024, 21(11): 2559-2596. |
| [7] | 孙芹, 周国庆, 翟万领, 等. 局部多热源下拓扑优化通道平板脉动热管的传热特性[J]. 化工学报, 2025, 76(3):1006-1017. |
| SUN Qin, ZHOU Guoqing, ZHAI Wanling, et al. Heat transfer characteristics of flat pulsating heat pipe with topology optimization channel under local multi-heat sources[J]. CIESC Journal, 2025,76(3):1006-1017. | |
| [8] | TSENG Chih-Yung, YANG Kai-Shing, CHIEN Kuo-Hsiang, et al. Investigation of the performance of pulsating heat pipe subject to uniform/alternating tube diameters[J]. Experimental Thermal and Fluid Science, 2014, 54: 85-92. |
| [9] | TSENG Chih-Yung, YANG Kai-Shing, CHIEN Kuo-Hsiang, et al. A novel double pipe pulsating heat pipe design to tackle inverted heat source arrangement[J]. Applied Thermal Engineering, 2016, 106: 697-701. |
| [10] | KHANDEKAR Sameer, CHAROENSAWAN Piyanun, GROLL Manfred, et al. Closed loop pulsating heat pipes Part B: Visualization and semi-empirical modeling[J]. Applied Thermal Engineering, 2003, 23(16): 2021-2033. |
| [11] | MANE Kishor Vishwanath, ALEKSEIK Yevhenii. Comprehensive parametric and design review for reducing pulsating heat pipes dependence on space orientation[J]. Archives of Thermodynamics, 2024: 165-182. |
| [12] | Jaeyeong JO, KIM Jungho, KIM Sung Jin. Experimental investigations of heat transfer mechanisms of a pulsating heat pipe[J]. Energy Conversion and Management, 2019, 181: 331-341. |
| [13] | 卜治丞, 焦波, 林海花, 等. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
| BU Zhicheng, JIAO Bo, LIN Haihua, et al. Review on computational fluid dynamics(CFD) simulation and advances in pulsating heat pipes[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. | |
| [14] | 孙芹, 屈健, 袁建平. 等截面和变截面通道硅基微型脉动热管传热特性比较[J]. 化工学报, 2017, 68(5): 1803-1810, 2218. |
| SUN Qin, QU Jian, YUAN Jianping. Heat transfer performance comparison of silicon-based micro oscillating heat pipes with and without expanding channels[J]. CIESC Journal, 2017, 68(5): 1803-1810, 2218. | |
| [15] | 张东, 侯宏艺, 李庆亮, 等. 非均匀热流密度条件下脉动热管运行特性分析[J]. 华南理工大学学报(自然科学版), 2022, 50(7): 126-135. |
| ZHANG Dong, HOU Hongyi, LI Qingliang, et al. Analysis of operation characteristics of pulsating heat pipe under the condition of non-uniform heat flux[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(7): 126-135. | |
| [16] | WENG Zhenchuan, DU Juan, JIAO Feng, et al. Experimental investigation on the heat transfer performance of pulsating heat pipe with self-rewetting Fe3O4-nanofluid[J]. Case Studies in Thermal Engineering, 2024, 59: 104456. |
| [17] | 包康丽. 热传输距离对不同工作流体脉动热管工作特性影响的研究[D]. 杭州: 浙江大学, 2023. |
| BAO Kangli. Study on the effects of heat transfer distance on the operating characteristics of pulsating heat pipe with different working fluids[D]. Hangzhou: Zhejiang University, 2023. | |
| [18] | 郭子瑞, 王家伟, 池日光, 等. L形脉动热管电池包的传热性能数值研究[J]. 哈尔滨商业大学学报(自然科学版), 2024, 40(5): 566-571. |
| GUO Zirui, WANG Jiawei, CHI Riguang, et al. Numerical study on heat tranfer performance of L-shaped pulsating heat pipe tube battery pack[J].The Journal of Harbin University of Commerce (Natural Sciences Edition), 2024, 40(5): 566-571. | |
| [19] | CZAJKOWSKI Cezary, NOWAK Andrzej I, Przemysław BŁASIAK, et al. Experimental study on a large scale pulsating heat pipe operating at high heat loads, different adiabatic lengths and various filling ratios of acetone, ethanol, and water[J]. Applied Thermal Engineering, 2020, 165: 114534. |
| [20] | BAO Kangli, ZHUANG Yuan, GAO Xu, et al. Transient numerical model on the design optimization of the adiabatic section length for the pulsating heat pipe[J]. Applied Sciences, 2021, 11(20): 9432. |
| [21] | FONSECA Luis Diego, PFOTENHAUER John, MILLER Franklin. Short communication: Thermal performance of a cryogenic helium pulsating heat pipe with three evaporator sections[J]. International Journal of Heat and Mass Transfer, 2018, 123: 655-656. |
| [22] | FONSECA Luis Diego, PFOTENHAUER John, MILLER Franklin. Results of a three evaporator cryogenic helium Pulsating Heat Pipe[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1275-1286. |
| [23] | Niti KAMMUANG-LUE, SAKULCHANGSATJATAI Phrut, TERDTOON Pradit. Thermal performance of various adiabatic section lengths of closed-loop pulsating heat pipe designed for energy recovery applications[J]. Energy Reports, 2022, 8: 731-737. |
| [24] | SUKCHANA Thanaphol, JAIBOONMA Chaiyun. Effect of filling ratios and adiabatic length on thermal efficiency of long heat pipe filled with R-134a[J]. Energy Procedia, 2013, 34: 298-306. |
| [25] | GAN Zhihua, SUN Xiao, JIAO Bo, et al. Experimental study on a hydrogen closed loop pulsating heat pipe with different adiabatic lengths[J]. Heat Transfer Engineering, 2019, 40(3/4): 205-214. |
| [26] | 白雪玉. 部分水平结构脉动热管的性能研究[D]. 天津: 天津大学, 2018. |
| BAI Xueyu. Investigation of pulsating heat pipe with partial horizontal structure[D]. Tianjin: Tianjin University, 2018. | |
| [27] | CZAJKOWSKI Cezary, NOWAK Andrzej I, Sławomir PIETROWICZ. Flower Shape Oscillating Heat Pipe—A novel type of oscillating heat pipe in a rotary system of coordinates—An experimental investigation[J]. Applied Thermal Engineering, 2020, 179: 115702. |
| [28] | CHEN Yang, HE Yongqing, ZHU Xiaoqin. Flower-type pulsating heat pipe for a solar collector[J]. International Journal of Energy Research, 2020, 44(9): 7734-7745. |
| [29] | Kritsada ON-AI, Niti KAMMUANG-LUE, TERDTOON Pradit, et al. Implied physical phenomena of rotating closed-loop pulsating heat pipe from working fluid temperature[J]. Applied Thermal Engineering, 2019, 148: 1303-1309. |
| [30] | LIU Ying, BAO Kangli, YAN Yuhao, OUYANG Hongshen, HAN Xiaohong. Investigation on the influence of different heat transmission distances on thermo-hydrodynamic characteristics of pulsating heat pipes[J]. Applied Thermal Engineering, 2023, 234: 1359-4311. |
| [31] | FONSECA Luis Diego, MILLER Franklin, PFOTENHAUER John. Experimental heat transfer analysis of a cryogenic nitrogen pulsating heat Pipe at various liquid fill ratios[J]. Applied Thermal Engineering, 2018, 130: 343-353. |
| [32] | BRUCE Romain, BARBA Maria, BONELLI Antoine, et al. Thermal performance of a meter-scale horizontal nitrogen pulsating heat pipe[J]. Cryogenics, 2018, 93: 66-74. |
| [33] | LI Yi, WANG Qiuliang, CHEN Shunzhong, et al. Experimental investigation of the characteristics of cryogenic oscillating heat pipe[J]. International Journal of Heat and Mass Transfer, 2014, 79: 713-719. |
| [34] | SAGAR Kalpak R, NAIK H B, MEHTA Hemantkumar B. Numerical study of liquid nitrogen based pulsating heat pipe for cooling superconductors[J]. International Journal of Refrigeration, 2021, 122: 33-46. |
| [35] | SAGAR Kalpak R, NAIK H B, MEHTA Hemantkumar B. CFD analysis of cryogenic pulsating heat pipe with near critical diameter under varying gravity conditions[J]. Theoretical Foundations of Chemical Engineering, 2020, 54(1): 64-76. |
| [36] | LI Sizhuo, BU Zhicheng, FANG Tiegen, et al. Experimental study on the thermo-hydrodynamic characteristics of a nitrogen pulsating heat pipe[J]. International Communications in Heat and Mass Transfer, 2023, 146: 106920. |
| [37] | 李思卓. 液氮温区脉动热管流动特性及传热机理研究[D]. 杭州: 浙江大学, 2023. |
| LI Sizhuo. Study on flow characteristics and heat transfer mechanism of pulsating heat pipe at liquid nitrogen temperature range[D]. Hangzhou: Zhejiang University, 2023. | |
| [38] | 卜治丞, 李思卓, 焦波, 等. 不同冷凝段温度下液氮脉动热管可视化实验研究[J]. 化工学报, 2023, 74(12): 4892-4903. |
| BU Zhicheng, LI Sizhuo, JIAO Bo, et al. Visualization study on a nitrogen pulsating heat pipe under different condenser temperatures[J]. CIESC Journal, 2023, 74(12): 4892-4903. | |
| [39] | BU Zhicheng, LI Sizhou, ZHAO Shuyi, et al. Thermo-hydrodynamic analysis of a nitrogen flat-plate pulsating heat pipe using CFD modeling and visualization experiments[J]. International Communications in Heat and Mass Transfer, 2024, 159: 108029. |
| [40] | 何欣. 超临界管径脉动热管单向循环流动下理论及实验研究[D]. 大连: 大连海事大学, 2024. |
| HE Xin. Theoretical and experimental research on unidirectional circulating flow in supercritical oscillating heat pipe[D]. Dalian: Dalian Maritime University, 2024. | |
| [41] | 孙潇. 液氢温区脉动热管高效传热理论及实验研究[D]. 杭州: 浙江大学, 2021. |
| SUN Xiao. Study on efficient heat transfer performance of pulsating heat pipe at liquid hydrogen temperature range[D]. Hangzhou: Zhejiang University, 2021. | |
| [42] | YE Mengting, XIANG Daoping, GUI Ziyu. Thermal conductivity enhancement of epoxy by a 3D Si3N4 crystal rod/grain skeleton fabricating from photovoltaic silicon waste[J]. Ceramics International, 2024, 50(24): 53780-53789. |
| [1] | 李卡, 夏宇轩, 吴晓琴, 易兰, 罗浩. 双层多孔介质燃烧反应器的孔隙尺度计算流体动力学模拟[J]. 化工进展, 2025, 44(8): 4381-4393. |
| [2] | 沈宪琨, 贾志勇, 蓝晓程, 王铁峰. CFD-PBM耦合模型用于浆态床反应器的研究进展[J]. 化工进展, 2025, 44(8): 4408-4418. |
| [3] | 续文钧, 张建波, 郭彦霞, 李会泉, 李少鹏, 任艺凌. 锚框式桨结构参数对煤气化渣活化过程流场特性的影响[J]. 化工进展, 2025, 44(8): 4463-4477. |
| [4] | 王雅彬, 赵碧丹, 徐繁, 兰斌, 王军武. 基于结构双流体模型的循环流化床全回路模拟[J]. 化工进展, 2025, 44(8): 4500-4512. |
| [5] | 安澍, 马永丽, 丰雷, 张紫浩, 刘明言. 网式水基泡沫发泡过程CFD模拟[J]. 化工进展, 2025, 44(8): 4545-4555. |
| [6] | 卢玉成, 黄涛, 罗亚军, 刘佳辉, 巩飞艳, 严超宇, 刘晓星. 水悬浮造粒搅拌釜内气液固三相混合特性CFD模拟[J]. 化工进展, 2025, 44(8): 4556-4566. |
| [7] | 刘廷廷, 孟子程, 穆丽静, 陈锡忠, 刘岑凡. 基于图卷积神经网络的乙烯氧化反应器的三维物理场快速预测[J]. 化工进展, 2025, 44(8): 4571-4581. |
| [8] | 史天乐, 李飞, 陈昇, 卢春喜, 王维. 基于CFD模拟的人工神经网络动态溯源模型[J]. 化工进展, 2025, 44(8): 4772-4784. |
| [9] | 刘建红, 刘栋, 商福民, 杨凯, 郑超凡, 曹欣. 非对称结构脉动热管换热装置传热性能[J]. 化工进展, 2025, 44(7): 3727-3736. |
| [10] | 周鹏辉, 曾琳, 代黎, 李嘉乐, 陈建琦, 李剑平, 汪华林. 微旋流混合器的混合特性数值计算[J]. 化工进展, 2025, 44(6): 3280-3287. |
| [11] | 周鹏辉, 曾琳, 代黎, 冯小波, 倪笛. 响应面法和熵权法对离心风机的多目标性能优化[J]. 化工进展, 2025, 44(6): 3271-3279. |
| [12] | 黄政锋, 王恒, 洪浩, 朱国瑞. 同心圆过渡排布管束旋涡脱落特性[J]. 化工进展, 2025, 44(2): 698-705. |
| [13] | 王思懿, 许建良, 代正华, 武国义, 王辅臣. 多晶硅还原炉气相沉积反应数值模拟[J]. 化工进展, 2025, 44(2): 706-716. |
| [14] | 许智, 姜昌伟, 李兵, 亓俣权, 钱发, 李光伟. 相变冷却与液冷耦合的锂电池组热管理系统多目标优化[J]. 化工进展, 2025, 44(10): 5627-5639. |
| [15] | 徐阳, 杨其洲, 潘跃跃, 周勇军. 穿流-四斜叶组合桨搅拌槽内的流场特性[J]. 化工进展, 2025, 44(1): 38-47. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |