化工进展 ›› 2025, Vol. 44 ›› Issue (12): 7152-7164.DOI: 10.16085/j.issn.1000-6613.2024-1973
• 生物与医药化工 • 上一篇
陈晓真1(
), 苏艳蕾1, 陆兴蕾1, 冯杰2, 周凯迪1, 关欣1, 蓝丽红1, 蓝平1(
), 何日梅2(
)
收稿日期:2024-12-02
修回日期:2025-02-25
出版日期:2025-12-25
发布日期:2026-01-06
通讯作者:
蓝平,何日梅
作者简介:陈晓真(1998—),女,硕士研究生,研究方向为生物质材料。E-mail:chenxz 202111 @163.com。
基金资助:
CHEN Xiaozhen1(
), SU Yanlei1, LU Xinglei1, FENG Jie2, ZHOU Kaidi1, GUAN Xin1, LAN Lihong1, LAN Ping1(
), HE Rimei2(
)
Received:2024-12-02
Revised:2025-02-25
Online:2025-12-25
Published:2026-01-06
Contact:
LAN Ping, HE Rimei
摘要:
利用木薯淀粉为原料,采用超声微波辅助醇沉法制备表没食子儿茶素没食子酸酯(EGCG)纳米淀粉颗粒(EGCG-SNPs)。介绍了EGCG的同步纳米化封装方法,并使用傅里叶变换红外光谱(FTIR)、场发射扫描电子显微镜(SEM)、X射线粉末衍射(XRD)、热重分析(TGA)和激光粒度仪等技术对EGCG-SNPs的物理化学性质进行了分析。研究结果表明,EGCG-SNPs具有均匀的粒径[(139.10±18.53)nm]和球形结构,表面具有轮纹。XRD分析显示其晶型由木薯淀粉的A形结构转变为V形结构,结晶度显著降低,热稳定性得到改善。FTIR分析进一步表明EGCG与淀粉之间的氢键作用增强,提升了纳米颗粒的结构稳定性。EGCG-SNPs具有较高的载药量[(378.05±3.04)mg/g]和包埋率(50.02%±2.22%),并在DPPH和ABTS自由基清除实验中表现出显著的抗氧化活性。药物释放实验表明,EGCG-SNPs在模拟消化环境中表现出较好的缓释性能。综上所述,EGCG-SNPs不仅具有良好的包埋效果和缓释性能,还表现出稳定的抗氧化活性,相比游离EGCG,EGCG-SNPs药效显著提高。本文为EGCG在药物传递、癌症治疗及相关疾病防治中的应用提供了新的思路。
中图分类号:
陈晓真, 苏艳蕾, 陆兴蕾, 冯杰, 周凯迪, 关欣, 蓝丽红, 蓝平, 何日梅. 表没食子儿茶素没食子酸酯的纳米化封装及应用[J]. 化工进展, 2025, 44(12): 7152-7164.
CHEN Xiaozhen, SU Yanlei, LU Xinglei, FENG Jie, ZHOU Kaidi, GUAN Xin, LAN Lihong, LAN Ping, HE Rimei. Nano encapsulation and application of epigallocatechin gallate[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7152-7164.
| 样品 | 粒径/nm | 分散系数/% | zeta电位/mV |
|---|---|---|---|
| SNPs | 64.62±2.25 | 0.45±0.04 | -5.46±0.37 |
| EGCG-SNPs | 139.10±18.53 | 0.22±0.03 | -11.63±0.25 |
表1 粒径与zeta电位结果
| 样品 | 粒径/nm | 分散系数/% | zeta电位/mV |
|---|---|---|---|
| SNPs | 64.62±2.25 | 0.45±0.04 | -5.46±0.37 |
| EGCG-SNPs | 139.10±18.53 | 0.22±0.03 | -11.63±0.25 |
| 样品名称 | 模型 | 回归方程 | R2 |
|---|---|---|---|
| EGCG-SNPs胰液 | 零级药动学 | y=3.68x +1.54 | 0.9847 |
| 一级药动学 | y=-18936.21(1-e2.13x ) | 0.9696 | |
| Higuchi药动学 | y=15.36x1/2-13.87 | 0.9358 | |
| Ritger-peppas药动学 | y=4.531x0.93 | 0.9814 | |
| EGCG-SNPs胃液 | 零级药动学 | y=4.00 x-6.14 | 0.9906 |
| 一级药动学 | y=18498.17(1-e-0.000064x ) | 0.3161 | |
| Higuchi药动学 | y=13.17x1/2-16.78 | 0.9960 | |
| Ritger-peppas药动学 | y=0.50x2.06 | 0.8302 |
表2 药动学拟合参数
| 样品名称 | 模型 | 回归方程 | R2 |
|---|---|---|---|
| EGCG-SNPs胰液 | 零级药动学 | y=3.68x +1.54 | 0.9847 |
| 一级药动学 | y=-18936.21(1-e2.13x ) | 0.9696 | |
| Higuchi药动学 | y=15.36x1/2-13.87 | 0.9358 | |
| Ritger-peppas药动学 | y=4.531x0.93 | 0.9814 | |
| EGCG-SNPs胃液 | 零级药动学 | y=4.00 x-6.14 | 0.9906 |
| 一级药动学 | y=18498.17(1-e-0.000064x ) | 0.3161 | |
| Higuchi药动学 | y=13.17x1/2-16.78 | 0.9960 | |
| Ritger-peppas药动学 | y=0.50x2.06 | 0.8302 |
| [1] | Marta WŁODARCZYK, CIEBIERA Michał, NOWICKA Grażyna, et al. Epigallocatechin gallate for the treatment of benign and malignant gynecological diseases-focus on epigenetic mechanisms[J]. Nutrients, 2024, 16(4): 559. |
| [2] | 侯改霞. 表没食子儿茶素没食子酸酯(EGCG)的生物学功能及其在运动医学领域的研究展望[J]. 河南大学学报(医学版), 2024, 43(1): 12-18. |
| HOU Gaixia. Biological functions of epigallocatechin-3-gallate (EGCG) and its research perspectives in sports medicine[J]. Journal of Henan University (Medical Science), 2024, 43(1): 12-18. | |
| [3] | JIA Zi, MAISHI Nako, TAKEKAWA Hideki, et al. Targeting tumor endothelial cells by EGCG using specific liposome delivery system inhibits vascular inflammation and thrombosis[J]. Cancer Medicine, 2024, 13(23): e70462. |
| [4] | MAO Shuifang, ZENG Yujun, REN Yanming, et al. EGCG induced the formation of protein nanofibrils hydrogels with enhanced anti-bacterial activity[J]. Food Hydrocolloids, 2024, 157: 110408. |
| [5] | Tanushree DAS, MONDAL Sanchaita, Sujata DAS, et al. Enhanced anticancer activity of (-)-epigallocatechin-3-gallate (EGCG) encapsulated NPs toward colon cancer cell lines[J]. Free Radical Research, 2024, 58(10): 565-582. |
| [6] | CHEN Ying, LIU Zhonghua, GONG Yushun. Neuron-immunity communication: Mechanism of neuroprotective effects in EGCG[J]. Critical Reviews in Food Science and Nutrition, 2024, 64(25): 9333-9352. |
| [7] | WANG Yingqi, LI Qingsheng, ZHENG Xinqiang, et al. Antiviral effects of green tea EGCG and its potential application against COVID-19[J]. Molecules, 2021, 26(13): 3962. |
| [8] | GUAN Yingling, ZHU Hengxing, LIN Minghao, et al. Preparation and stability evaluation of flexible nanoliposomes co-encapsulated with black wolfberry anthocyanins and EGCG[J]. LWT, 2025, 217: 117402. |
| [9] | KORIN Ali, GOUDA Mostafa M, YOUSSEF Mahmoud, et al. Whey protein sodium-caseinate as a deliverable vector for EGCG: in vitro optimization of its bioaccessibility, bioavailability, and bioactivity mode of actions[J]. Molecules, 2024, 29(11): 2588. |
| [10] | PANDEY Pratibha, VERMA Meenakshi, LAKHANPAL Sorabh, et al. An updated review summarizing the anticancer potential of poly(lactic-co-glycolic acid) (PLGA) based curcumin, epigallocatechin gallate, and resveratrol nanocarriers[J]. Biopolymers, 2025, 116(1): e23637. |
| [11] | SILVA GOMES Beatriz DA, CLÁUDIA PAIVA-SANTOS Ana, VEIGA Francisco, et al. Beyond the adverse effects of the systemic route: Exploiting nanocarriers for the topical treatment of skin cancers[J]. Advanced Drug Delivery Reviews, 2024, 207: 115197. |
| [12] | LI Danhui, MARTINI Nataly, WU Zimei, et al. Niosomal nanocarriers for enhanced dermal delivery of epigallocatechin gallate for protection against oxidative stress of the skin[J]. Pharmaceutics, 2022, 14(4): 726. |
| [13] | 易聪华, 徐青荷, 王淼, 等. pH敏感性生物基纳米载药粒子的研究进展[J]. 化工进展, 2021, 40(6): 3411-3420. |
| YI Conghua, XU Qinghe, WANG Miao, et al. Research progress of pH-sensitive biopolymer nanocarriers[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3411-3420. | |
| [14] | ZHANG Guojuan, ZHANG Jianfang. Enhanced oral bioavailability of EGCG using pH-sensitive polymeric nanoparticles: Characterization and in vivo investigation on nephrotic syndrome rats[J]. Drug Design, Development and Therapy, 2018, 12: 2509-2518. |
| [15] | 林爽. 具有氧化还原响应的EGCG/Cys交联载药纳米颗粒的制备和性能研究[D]. 成都: 西南交通大学, 2019. |
| LIN Shuang. Preparation and performance study of EGCG/Cys cross-linked drug-loaded nanoparticles with redox response[D]. Chengdu: Southwest Jiaotong University, 2019. | |
| [16] | XU Shibo, CHANG Linna, ZHAO Xingjun, et al. Preparation of epigallocatechin gallate decorated Au-Ag nano-heterostructures as NIR-sensitive nano-enzymes for the treatment of osteoarthritis through mitochondrial repair and cartilage protection[J]. Acta Biomaterialia, 2022, 144: 168-182. |
| [17] | GAO Pengfei, ZUO Yangpeng, YANG Yulu, et al. Multifunctional photothermal PB@EGCG-Sr nanocoating design on titanium surface: To achieve short-term rapid osseointegration and on-demand photothermal long-term osteogenesis[J]. Chemical Engineering Journal, 2023, 474: 145608. |
| [18] | LE Jingqing, YANG Fang, YIN Mengdie, et al. Biomimetic polyphenol-coated nanoparticles by co-assembly of mTOR inhibitor and photosensitizer for synergistic chemo-photothermal therapy[J]. Colloids and Surfaces B: Biointerfaces, 2022, 209: 112177. |
| [19] | WU Bingbing, SHAO Yuyan, ZHAO Wei, et al. Dual functions of epigallocatechin gallate surface-modified Au nanorods@selenium composites for near-infrared-II light-responsive synergistic antibacterial therapy[J]. Journal of Biomaterials Applications, 2022, 36(10): 1812-1825. |
| [20] | 张胜梦, 陈雨晴, 游益, 等. 多糖-蛋白质纳米载体研究进展[J]. 河南工业大学学报(自然科学版), 2024, 45(6): 137-149. |
| ZHANG Shengmeng, CHEN Yuqing, YOU Yi, et al. Research progress in polysaccharide-protein nanocarriers[J]. Journal of Henan University of Technology (Natural Science Edition), 2024, 45(6): 137-149. | |
| [21] | ABDI Gholamreza, JAIN Mukul, PATIL Nil, et al. Tragacanth gum-based hydrogels for drug delivery and tissue engineering applications[J]. Frontiers in Materials, 2024, 11: 1296399. |
| [22] | MEI Shijuan, ROOPASHREE R, ALTALBAWY Farag M A, et al. Synthesis, characterization, and applications of starch-based nano drug delivery systems for breast cancer therapy: A review[J]. International Journal of Biological Macromolecules, 2024, 280: 136058. |
| [23] | BHAVYA E P, RAMAN Maya. Comprehensive review on synthesis of nano starch and its applications in food packaging industry[J]. Journal of Packaging Technology and Research, 2024, 8(3): 153-166. |
| [24] | BORJIHAN Qinggele, LIANG Xuefang, CHEN Ting, et al. Biological regulation on iodine using nano-starch for preventing thyroid dysfunction[J]. Journal of Hazardous Materials, 2023, 460: 132200. |
| [25] | 孙锦, 关欣, 寇宗亮, 等. 淀粉纳米颗粒的高效制备及吸附性能[J]. 食品与发酵工业, 2019, 45(9): 108-116. |
| SUN Jin, GUAN Xin, KOU Zongliang, et al. Highly efficient preparation of starch nanoparticles and their adsorption capacity[J]. Food and Fermentation Industries, 2019, 45(9): 108-116. | |
| [26] | 孙锦, 刘芳, 何会泉, 等. 微波超声波辅助制备木薯淀粉纳米颗粒及其特性表征[J]. 食品工业科技, 2018, 39(20): 128-134, 140. |
| SUN Jin, LIU Fang, HE Huiquan, et al. Preparation and characterization of cassava starch nanoparticles with radiation of microwave and ultrasonic[J]. Science and Technology of Food Industry, 2018, 39(20): 128-134, 140. | |
| [27] | MORENO-VÁSQUEZ María J, CARRETAS-VALDEZ Manuel I, LUQUE-ALCARAZ Ana G, et al. Conjugation of lysozyme and epigallocatechin gallate for improving antibacterial and antioxidant properties[J]. Current Microbiology, 2024, 81(9): 264. |
| [28] | 李璐璐, 杨杨, 马春敏, 等. 汉麻蛋白与EGCG复合物的制备及应用[J]. 包装与食品机械, 2024, 42(5): 24-33. |
| LI Lulu, YANG Yang, MA Chunmin, et al. The preparation and application of hemp protein and EGCG complex[J]. Packaging and Food Machinery, 2024, 42(5): 24-33. | |
| [29] | 李黄炜, 梁茵瑜, 范佳欣, 等. 酶解联合动态高压微射流制备淀粉/百里酚纳米乳液及其结构与性质分析[J]. 食品工业科技, 2024, 45(23): 121-128. |
| LI Huangwei, LIANG Yinyu, FAN Jiaxin, et al. Structure and property analysis of starch/thymol nanoemulsion prepared by enzymolysis combined with dynamic high pressure micro-fluidization[J]. Science and Technology of Food Industry, 2024, 45(23): 121-128. | |
| [30] | KARIM Aiman, REHMAN Abdur, KHALIFA Ibrahim, et al. Encapsulation of lutein within ultrasonicated peach gum-sodium caseinate complex nanoparticles via electrostatic complexation: Physiochemical properties, structural interaction mechanisms, and in vitro release analyses[J]. Food and Bioprocess Technology, 2025,18(5): 4392-4409. |
| [31] | LUO Peihuan, AI Jian, WANG Qiongyao, et al. Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice[J]. Food Chemistry, 2025, 469: 142555. |
| [32] | ZHU Miao, FEI Xiaoyun, GONG Deming, et al. Effects of processing conditions and simulated digestion in vitro on the antioxidant activity, inhibition of xanthine oxidase and bioaccessibility of epicatechin gallate[J]. Foods, 2023, 12(14): 2807. |
| [33] | 史永桂, 姚先超, 焦思宇, 等. 超声辅助醇沉法制备淀粉纳米颗粒同步包埋叶黄素[J]. 中国食品学报, 2023, 23(9): 160-170. |
| SHI Yonggui, YAO Xianchao, JIAO Siyu, et al. Preparation of starch nanoparticles and simultaneously embedding xanthophyll by ultrasound-assisted alcohol precipitation[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(9): 160-170. | |
| [34] | YANG Jie, LI Fang, LI Man, et al. Fabrication and characterization of hollow starch nanoparticles by gelation process for drug delivery application[J]. Carbohydrate Polymers, 2017, 173: 223-232. |
| [35] | 段智颖, 王申宛, 艾斌凌, 等. 表没食子儿茶素没食子酸酯-香蕉脱支淀粉纳米颗粒的绿色制备及其性质[J]. 食品科学, 2023, 44(12): 74-83. |
| DUAN Zhiying, WANG Shenwan, AI Binling, et al. Green preparation and properties of epigallocatechin-3-gallate loaded debranched banana starch nanoparticles[J]. Food Science, 2023, 44(12): 74-83. | |
| [36] | WANG Shenwan, DUAN Zhiying, ZHENG Lili, et al. Digestive enzyme corona formed in simulated gastrointestinal tract and its impact on EGCG release from banana resistant starch nanoparticles[J]. Food Hydrocolloids, 2024, 146: 109267. |
| [37] | BARUAH Kamal Narayan, NAGAOKA Satoshi, BANNO Arata, et al. Nano-encapsulation of epigallocatechin gallate using starch nanoparticles: Characterization and insights on in vitro micellar cholesterol solubility[J]. Journal of Food Science, 2024, 89(9): 5701-5711. |
| [38] | LIU Qing, CAI Wei, ZHEN Tianyuan, et al. Preparation of debranched starch nanoparticles by ionic gelation for encapsulation of epigallocatechin gallate[J]. International Journal of Biological Macromolecules, 2020, 161: 481-491. |
| [39] | ZHU Song, LIU Bo, WANG Fang, et al. Characterization and in vitro digestion properties of cassava starch and epigallocatechin-3-gallate (EGCG) blend[J]. LWT, 2021, 137: 110398. |
| [40] | DAI Taotao, LI Ti, HE Xiaohong, et al. Analysis of inhibitory interaction between epigallocatechin gallate and alpha-glucosidase: A spectroscopy and molecular simulation study[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 230: 118023. |
| [41] | ZHAO Wangchen, LIU Ziyu, LIANG Xiaoyun, et al. Preparation and characterization of epigallocatechin-3-gallate loaded melanin nanocomposite (EGCG @MNPs) for improved thermal stability, antioxidant and antibacterial activity[J]. LWT, 2022, 154: 112599. |
| [42] | QIAN Yaru, REN Yuhang, CHENG Xiaofang, et al. The physicochemical and antioxidant characteristics of a p-coumaric acid-epigallocatechin gallate-chitosan tyrosinase inhibitor[J]. Food Biophysics, 2024, 19(3): 653-664. |
| [43] | CHEN Wenjing, JIA Ru, LIU Lu, et al. Comparative study on dynamic in vitro digestion characteristics of lotus seed starch-EGCG complex prepared by different processing methods[J]. Food Chemistry, 2024, 455: 139849. |
| [44] | LI Zehua, CAI Ming, YANG Kai, et al. Kinetic study of d-limonene release from finger citron essential oil loaded nanoemulsions during simulated digestion in vitro [J]. Journal of Functional Foods, 2019, 58: 67-73. |
| [45] | RAMESH Nithya, MANDAL Abul Kalam Azad. Pharmacokinetic, toxicokinetic, and bioavailability studies of epigallocatechin-3-gallate loaded solid lipid nanoparticle in rat model[J]. Drug Development and Industrial Pharmacy, 2019, 45(9): 1506-1514. |
| [1] | 屈超, 刘俊红, 贾彬, 黄勇. 水性丙烯酸树脂对PBAT/淀粉复合材料性能影响[J]. 化工进展, 2024, 43(6): 3268-3276. |
| [2] | 尚高原, 余金鹏, 崔凯, 郭坤. 外加电位对高浓度马铃薯淀粉废水电发酵产甲烷系统的影响[J]. 化工进展, 2024, 43(11): 6533-6542. |
| [3] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
| [4] | 郭宇, 佟民心, 吴红梅. 氨基功能化双醛淀粉吸附剂的制备及其对Pb(Ⅱ)的吸附行为[J]. 化工进展, 2023, 42(12): 6589-6599. |
| [5] | 郑进宝, 李琛. 淀粉基包装材料疏水性改善研究进展[J]. 化工进展, 2022, 41(6): 3089-3102. |
| [6] | 佟欣瑞, 刘彦君, 曹林峰, 毕美营, 董延甲, 吴欣瑜, 谈浚杰, 应明. 可控式citZ基因纳米盒的设计与研究[J]. 化工进展, 2021, 40(S1): 344-349. |
| [7] | 李思远, 李瑞松, 成军, 高萌萌, 张玉苍, 宋辉. 丙烯酰胺改性玉米淀粉/PVA复合膜的制备与表征[J]. 化工进展, 2021, 40(6): 3374-3379. |
| [8] | 刘玉华, 魏宏亮, 李松茂, 刘子君, 李维坤, 王刚. 淀粉基水凝胶的研究进展[J]. 化工进展, 2021, 40(12): 6738-6751. |
| [9] | 邓建辉, 杨晓青, 方称辉, 曹栋清, 李梁君, 张国庆, 郭建维. 静电纺丝/静电喷雾技术在电池领域的应用进展[J]. 化工进展, 2021, 40(10): 5600-5614. |
| [10] | 刘群, 张玉苍. 改性淀粉基生物降解塑料的研究进展[J]. 化工进展, 2020, 39(8): 3124-3134. |
| [11] | 刘土松, 谢新玲, 秦祖赠, 张友全, 朱勇, 蓝艺灵. 水醇淀粉凝胶的形成及多孔淀粉的制备[J]. 化工进展, 2020, 39(12): 5219-5227. |
| [12] | 李丽, 严月根, 吴华明. 一株污泥减量菌喷雾干燥条件的优化[J]. 化工进展, 2019, 38(s1): 193-200. |
| [13] | 李和平, 龚俊, 张淑芬, 张俊, 胡英相. 磁性印迹交联AA/AM接枝酯化氰乙基木薯淀粉微球的制备与吸附性能[J]. 化工进展, 2019, 38(04): 1930-1940. |
| [14] | 余韶阳,安瑛,李守猛,王循,钟强,雷文龙,丁玉梅,杨卫民,李好义. 高黏度聚乳酸(PLA)熔体微分离心静电纺丝[J]. 化工进展, 2019, 38(03): 1176-1181. |
| [15] | 柴琳, 杨文哲, 刘斌, 陈爱强. 多种类型液滴蒸发综述[J]. 化工进展, 2018, 37(S1): 19-28. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |