化工进展 ›› 2025, Vol. 44 ›› Issue (11): 6212-6230.DOI: 10.16085/j.issn.1000-6613.2024-1566
• 能源加工与技术 • 上一篇
陶婷1(
), 徐计元2, 张露2, 钱吉裕2(
), 王志飞1(
), 赵红1
收稿日期:2024-09-26
修回日期:2024-12-03
出版日期:2025-11-25
发布日期:2025-12-08
通讯作者:
钱吉裕,王志飞
作者简介:陶婷(2001—),女,硕士研究生,研究方向为化学热力学。E-mail:taoting1923@163.com。
基金资助:
TAO Ting1(
), XU Jiyuan2, ZHANG Lu2, QIAN Jiyu2(
), WANG Zhifei1(
), ZHAO Hong1
Received:2024-09-26
Revised:2024-12-03
Online:2025-11-25
Published:2025-12-08
Contact:
QIAN Jiyu, WANG Zhifei
摘要:
高热耗电子设备的散热问题已成亟待解决的关键工程问题。作为一种新型的散热技术,吸热化学反应因其高储存密度、可长期储存及在环境条件下储热等优势,受到广泛关注。为此,本文首先介绍了发生在不同温度下的高热耗场景特点与散热需要,接着结合吸热反应的原理,并根据生成物的不同,重点分析了现有吸热反应类型与特点,具体包括氢体系、氨分解体系、水体系与碳酸盐体系。在上述分析中,进一步讨论了这些吸热反应对应的应用场景与存在的潜在问题。通过回顾传统超高温区与高温区中的化学反应进展,讨论了中低温区高热耗设备对吸热反应的要求。最后,从反应过程控制、产物处理等角度对基于吸热反应的散热技术前景进行了展望,试图从化学视角为该领域的研究提供借鉴。
中图分类号:
陶婷, 徐计元, 张露, 钱吉裕, 王志飞, 赵红. 基于吸热反应的电子设备热耗散相关技术进展[J]. 化工进展, 2025, 44(11): 6212-6230.
TAO Ting, XU Jiyuan, ZHANG Lu, QIAN Jiyu, WANG Zhifei, ZHAO Hong. Progress on heat dissipation technology via endothermic chemical reaction for high heat flux equipment[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6212-6230.
| 飞行器名称 | 总加热量/kJ·m-2 |
|---|---|
| “双子星座”号宇宙飞船 | 144628~275044 |
| “阿波罗”宇宙飞船 | 505780 |
| 中程导弹 | 535040 |
| 远程导弹 | 3009600 |
| 神舟飞船 | 117600 |
表1 飞船和导弹再入时表面总加热量[18]
| 飞行器名称 | 总加热量/kJ·m-2 |
|---|---|
| “双子星座”号宇宙飞船 | 144628~275044 |
| “阿波罗”宇宙飞船 | 505780 |
| 中程导弹 | 535040 |
| 远程导弹 | 3009600 |
| 神舟飞船 | 117600 |
| 位置 | 耐受温度/℃ | 解决方案 |
|---|---|---|
| 前缘 | 1450~1626 | 增强碳-碳烧蚀防护 |
| 迎风面 | 800~1200 | 陶瓷瓦 |
| 背风面 | 300~450 | 纤维毡 |
表2 航天飞机热防护方案
| 位置 | 耐受温度/℃ | 解决方案 |
|---|---|---|
| 前缘 | 1450~1626 | 增强碳-碳烧蚀防护 |
| 迎风面 | 800~1200 | 陶瓷瓦 |
| 背风面 | 300~450 | 纤维毡 |
| 水合盐 | 相变温度/℃ | 相变潜热/J·g-1 |
|---|---|---|
| CaCl2·6H2O | 29.6 | 191 |
| LiNO3·3H2O | 30 | 125 |
| MgCl2·6H2O | 117 | 167 |
| CaBr2·2H2O | 34.3 | 116 |
| NaH2PO4·12H2O | 36.5 | 264 |
| CH3COONa·3H2O | 58 | 246 |
| Na2SO4·10H2O | 32.4 | 251 |
| Ba(OH)₂·8H₂O | 78 | 265.7 |
表3 水合盐相变储能参数
| 水合盐 | 相变温度/℃ | 相变潜热/J·g-1 |
|---|---|---|
| CaCl2·6H2O | 29.6 | 191 |
| LiNO3·3H2O | 30 | 125 |
| MgCl2·6H2O | 117 | 167 |
| CaBr2·2H2O | 34.3 | 116 |
| NaH2PO4·12H2O | 36.5 | 264 |
| CH3COONa·3H2O | 58 | 246 |
| Na2SO4·10H2O | 32.4 | 251 |
| Ba(OH)₂·8H₂O | 78 | 265.7 |
| 序号 | 成核剂 | 质量分数 | 过冷度/℃ |
|---|---|---|---|
| 1 | — | 0 | 19.8 |
| 2 | Ba(OH)2 | 0.5 | 0 |
| 3 | Ca(OH)2 | 0.5 | 0.6 |
| 4 | Mg(OH)2 | 0.5 | 0.2 |
| 5 | MgO | 0.5 | 0 |
| 6 | CaC2O4 | 0.5 | 0 |
表4 成核剂对MgCl2·6H2O的影响[77]
| 序号 | 成核剂 | 质量分数 | 过冷度/℃ |
|---|---|---|---|
| 1 | — | 0 | 19.8 |
| 2 | Ba(OH)2 | 0.5 | 0 |
| 3 | Ca(OH)2 | 0.5 | 0.6 |
| 4 | Mg(OH)2 | 0.5 | 0.2 |
| 5 | MgO | 0.5 | 0 |
| 6 | CaC2O4 | 0.5 | 0 |
图13 双组分反应装置的设计[86]1—冷却装置;2—密封外壳;3—存储反应物质的分离隔膜;4—接触系统(触发两种反应物质接触);5—激活接触系统的接口原件;6—热界面;7—导热金属底座;8—密封外壳内部的腔室(减少发生热化学反应的腔室内的超压);9—将腔室内气体排出到冷却装置外部的机械元件;10—壁面;11—反应触发系统;12—触发元件与试剂R1组成的系统;E—冷却元件;S1—与冷却装置内部接触的界面;S2—与冷却装置外部接触界面;R1、R2—两种反应试剂;1B—冷却装置;2B—冷却装置外壳部分;3B—分离膜;4B—接触系统;5B—接口元件(R1被激活时,需通过接口元件5B);6B—冷却装置底部;7B—金属底板(可将化学反应产生的冷通过金属底板传递到外表面)
| 温度范围/℃ | 吸热反应 |
|---|---|
| 700~1000 | CaCO3(s) |
| 700~1000 | CH4(g)+H2O(g) |
| 900~1200 | SrCO3(s) |
| 1200~1300 | BaCO3(s) |
表5 不同温度范围内的吸热反应
| 温度范围/℃ | 吸热反应 |
|---|---|
| 700~1000 | CaCO3(s) |
| 700~1000 | CH4(g)+H2O(g) |
| 900~1200 | SrCO3(s) |
| 1200~1300 | BaCO3(s) |
| 温度范围/℃ | 吸热反应 | 储能密度/kJ·kg-1 |
|---|---|---|
| 29~80 | CaCl2·6H2O(s) | 191 |
| 30~40 | LiNO3·3H2O(l) | 274 |
| 80~90 | (CH3)2CHOH(l) | 1673 |
| 25~202 | 3NaAlH4(s) | 2160 |
| 91~130 | MgCl2·6H2O(s) | 160 |
| 170~340 | CaCl2·2NH3(s) | 2333 |
| 300~400 | MgH2(s) | 2814 |
| 300~400 | Mg(OH)2(s) | 1340 |
| 320~430 | MgCO3(s) | 1410 |
| 400~600 | Ca(OH)2(s) | 1406 |
| 800~900 | CaCO3(s) | 1790 |
表6 不同温度范围内的吸热反应
| 温度范围/℃ | 吸热反应 | 储能密度/kJ·kg-1 |
|---|---|---|
| 29~80 | CaCl2·6H2O(s) | 191 |
| 30~40 | LiNO3·3H2O(l) | 274 |
| 80~90 | (CH3)2CHOH(l) | 1673 |
| 25~202 | 3NaAlH4(s) | 2160 |
| 91~130 | MgCl2·6H2O(s) | 160 |
| 170~340 | CaCl2·2NH3(s) | 2333 |
| 300~400 | MgH2(s) | 2814 |
| 300~400 | Mg(OH)2(s) | 1340 |
| 320~430 | MgCO3(s) | 1410 |
| 400~600 | Ca(OH)2(s) | 1406 |
| 800~900 | CaCO3(s) | 1790 |
| [1] | 董彦芝, 刘芃, 王国栋,等. 航天器结构用材料应用现状与未来需求[J]. 航天器环境工程, 2010, 27(1): 41-44, 4. |
| DONG Yanzhi, LIU Peng, WANG Guodong, et al. Application and future demand of materials for spacecraft structures[J]. Spacecraft Environment Engineering, 2010, 27(1): 41-44, 4. | |
| [2] | 范绪箕. 气动加热与热防护系统[M]. 北京: 科学出版社, 2004. |
| FAN Xuji. Pneumatic heating and thermal protection system[M]. Beijing: Science Press, 2004. | |
| [3] | OZMAT B. Interconnect technologies and the thermal performance of MCM[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1992, 15(5): 860-869. |
| [4] | MCGLEN Ryan J, JACHUCK Roshan, LIN Song. Integrated thermal management techniques for high power electronic devices[J]. Applied Thermal Engineering, 2004, 24(8/9): 1143-1156. |
| [5] | GARIMELLA Suresh V. Advances in mesoscale thermal management technologies for microelectronics[J]. Microelectronics Journal, 2006, 37(11): 1165-1185. |
| [6] | 黄梦彬. 一种强迫风冷机柜的热设计[J]. 电子机械工程, 2006, 22(2): 12-13, 36. |
| HUANG Mengbin. Thermal design of the forced air-cooling radar cabinet[J]. Electro-Mechanical Engineering, 2006, (2): 12-13, 36. | |
| [7] | 夏侯国伟, 王当, 刘业鹏. IGBT功率模块冷却技术的综述[J]. 昆明理工大学学报(自然科学版), 2017, 42(1): 63-67, 84. |
| XIAHOU Guowei, WANG Dang, LIU Yepeng. Summary of IGBT power module cooling technology[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2017, 42(1):63-67, 84. | |
| [8] | 鲁祥友, 程远霞, 刘美静, 等. 用于大功率LED冷却的热管散热器的实验研究[J]. 半导体光电, 2008, 29(5): 651-654. |
| [69] | SCHMIDT Matthias, SZCZUKOWSKI Christoph, Christian ROßKOPF, et al. Experimental results of a 10kW high temperature thermochemical storage reactor based on calcium hydroxide[J]. Applied Thermal Engineering, 2014, 62(2): 553-559. |
| [70] | YAN T S, LI T X, XU J X, et al. Understanding the transition process of phase change and dehydration reaction of salt hydrate for thermal energy storage[J]. Applied Thermal Engineering, 2020, 166: 114655. |
| [71] | 张仁元. 相变材料与相变储热技术[M]. 北京: 科学出版社, 2008: 10-11. |
| ZHANG Renyuan. Phase change materials and phase change heat storage technology[M]. Beijing: Science Press, 2008: 10-11. | |
| [72] | 王温馨, 齐红, 丁益民. 水合盐相变储能材料的研究进展[J]. 化学通报, 2021, 84(4): 330-338. |
| WANG Wenxin, QI Hong, DING Yimin. Research progress in hydrated salt composite phase change energy storage materials[J]. Chemistry, 2021, 84(4): 330-338. | |
| [73] | KANNAN Sarath, KUMAR Navin, Milind A JOG, et al. Phase-transition efficacy and material compatibility with thermal cycling of lithium nitrate trihydrate as a phase-change material[J]. Industrial & Engineering Chemistry Research, 2022, 61(43): 16341-16351. |
| [74] | MAN Xi, LU Hao, XU Qing, et al. Review on the thermal property enhancement of inorganic salt hydrate phase change materials[J]. Journal of Energy Storage, 2023, 72: 108699. |
| [75] | SHAMBERGER Patrick J, REID Timothy. Thermophysical properties of lithium nitrate trihydrate from (253 to 353)K[J]. Journal of Chemical & Engineering Data, 2012, 57(5): 1404-1411. |
| [76] | VAN ESSEN V M, GORES J COT, BLEIJENDAAL L P J, et al. Characterization of salt hydrates for compact seasonal thermochemical storage[C]//ASME 2009 3rd International Conference on Energy Sustainability. San Francisco, California, USA: ASMEDC, 2010: 825-830. |
| [77] | LANE G A, ROSSOW H E. Hydrated MgCl2 or (MgNO3)2/MgCl2 reversible phase change compositions: EP0054758 [P]. 1981-06-09. |
| [78] | 苑坤杰, 张正国, 方晓明, 等. 水合无机盐及其复合相变储热材料的研究进展[J]. 化工进展, 2016, 35(6): 1820-1826. |
| [8] | LU Xiangyou, CHENG Yuanxia, LIU Meijing, et al. Experimental investigation on heat pipe heat sink for cooling high power LED[J]. Semiconductor Optoelectronics, 2008, 29(5): 651-654. |
| [9] | XU Hongbo, SI Chunqiang, SHAO Shuangquan, et al. Experimental investigation on heat transfer of spray cooling with isobutane (R600a)[J]. International Journal of Thermal Sciences, 2014, 86: 21-27. |
| [10] | ZHANG Yang, ZHANG Yue, BAKIR Muhannad S. Thermal design and constraints for heterogeneous integrated chip stacks and isolation technology using air gap and thermal bridge[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4(12): 1914-1924. |
| [11] | 闫霆, 王文欢, 王如竹. 化学吸附储热技术的研究现状及进展[J]. 材料导报, 2018, 32(23): 4107-4115, 4124. |
| YAN Ting, WANG Wenhuan, WANG Ruzhu. Present status and progress of research on chemical adsorption heat storage [J]. Materials Review, 2018, 32(23): 4107-4115, 4124. | |
| [12] | PARDO P, DEYDIER A, ANXIONNAZ-MINVIELLE Z, et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 591-610. |
| [13] | 杜善义, 方岱宁, 孟松鹤, 等. “近空间飞行器的关键基础科学问题”重大研究计划结题综述[J]. 中国科学基金, 2017, 31(2): 109-114. |
| DU Shanyi, FANG Daining, MENG Songhe, et al. Review of the achievements of major research plan on “key fundamental scientific problems on hypersonic vehicle”[J]. Bulletin of National Natural Science Foundation of China, 2017, 31(2): 109-114. | |
| [14] | 贺芳, 米镇涛, 孙海云. 提高烃类燃料热沉的研究进展[J]. 化学进展, 2006, 18(S2): 1041-1048. |
| HE Fang, MI Zhentao, SUN Haiyun. Improvement of heat sink of endothermic hydrocarbon fuels[J]. Progress in Chemistry, 2006, 18(S2): 1041-1048. | |
| [15] | 孙兆虎. 高超声速飞行器结构热问题讨论[J]. 航空科学技术, 2008, 19(3): 13-16. |
| SUN Zhaohu.The issues of the aerodynamic heating and thermal protection of hypersonic flight vehicle[J]. Aeronautical Science and Technology, 2008, 19(3): 13-16. | |
| [78] | YUAN Kunjie, ZHANG Zhengguo, FANG Xiaoming, et al. Research progress of inorganic hydrated salts and their phase change heat storage composites[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1820-1826. |
| [79] | LI T X, WU D L, HE F, et al. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2017, 115: 148-157. |
| [80] | SHARMA S K, JOTSHI C K, KUMAR S. Thermal stability of sodium salt hydrates for solar energy storage applications[J]. Solar Energy, 1990, 45(3): 177-181. |
| [81] | 曾正, 邵伟华, 胡博容, 等. SiC器件在光伏逆变器中的应用与挑战[J]. 中国电机工程学报, 2017, 37(1): 221-233. |
| ZENG Zheng, SHAO Weihua, HU Borong, et al. Chances and challenges of photovoltaic inverters with silicon carbide devices[J]. Proceedings of the CSEE, 2017, 37(1): 221-233. | |
| [82] | 李文琛, 蔡一凡, 严泰森, 等. 三水合醋酸钠/膨胀石墨复合相变材料的制备及其储热性能[J]. 上海交通大学学报, 2020, 54(10): 1015-1023. |
| LI Wenchen, CAI Yifan, YAN Taisen, et al. Preparation and thermal storage properties of sodium acetate trihydrate-expanded graphite as phase change composite[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1015-1023. | |
| [83] | WANG Qian, WANG Jiangtao, CHEN Yunyu, et al. Experimental investigation of barium hydroxide octahydrate as latent heat storage materials[J]. Solar Energy, 2019, 177: 99-107. |
| [84] | KENISARIN Murat, MAHKAMOV Khamid. Salt hydrates as latent heat storage materials: Thermophysical properties and costs[J]. Solar Energy Materials and Solar Cells, 2016, 145: 255-286. |
| [85] | 杜林秀, 王磊. 某风冷机载电子设备散热设计[J]. 中国机械, 2022(9): 12-15. |
| DU Linxiu, WANG Lei. Heat dissipation design of an air-cooled airborne electronic equipment[J]. Machine China, 2022 (9): 12-15. | |
| [86] | IATRIDES CLÉMENT V F F. Cooling devive with endothermic chemical reaction: EP3524905[P]. 2019-08-14. |
| [16] | 周印佳, 张志贤. 航天器可重复使用热防护技术研究进展与应用[J]. 航天返回与遥感, 2019, 40(5): 27-40. |
| ZHOU Yinjia, ZHANG Zhixian. Research progress and applications of reusable thermal protection technology for spacecraft[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(5): 27-40. | |
| [17] | 赵梦熊. 载人飞船返回舱的烧蚀防热[J]. 气动实验与测量控制, 1996,10(3): 1-9. |
| ZHAO Mengxiong. Ablation heat protection of manned spacecraft’s return cabin[J]. Journal of Experiments in Fluid Mechanics, , 1996, 10(3): 1-9. | |
| [18] | 党嘉立, 顾兆栴. 中国“神州号”载人飞船返回舱防热材料现状及展望:第十二届全国复合材料学术会议论文集[C]. 天津: 天津大学出版社, 2002: 15-19. |
| DANG Jiali, GU Zhaozhan. Current situation and prospect of thermal protection materials in the re-entry capsule of China’s Shenzhou manned spacecraft: Proceedings of the 12th National Conference on Composite Materials[C]. Tianjin: Tianjin University Press, 2002: 15-19. | |
| [19] | JENKINS Dennis R. X-15 extending the frontiers of flight[M]. Washington DC : NASA, 2007. |
| [20] | 黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41(12): 023716. |
| HUANG Hongyan, SU Lijun, LEI Chaoshuai, et al. Reusable thermal protective materials: Application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 023716. | |
| [21] | SHOEV G, OBLAPENKO G, KUNOVA O, et al. Validation of vibration-dissociation coupling models in hypersonic non-equilibrium separated flows[J]. Acta Astronautica, 2018, 144: 147-159. |
| [22] | 李广德, 张长瑞, 胡海峰, 等. 盖板式陶瓷热防护系统的传热性能优化[J]. 国防科技大学学报, 2014, 36(5): 143-148. |
| LI Guangde, ZHANG Changrui, HU Haifeng, et al. Optimization study of heat transfer properties for generic shingle ceramic thermal protection system[J]. Journal of National of University of Defense Technology, 2014, 36(5): 143-148. | |
| [23] | 夏刚, 程文科, 秦子增. 充气式再入飞行器柔性热防护系统的发展状况[J]. 宇航材料工艺, 2003, 33(6): 1-6. |
| XIA Gang, CHENG Wenke, QIN Zizeng. Development of flexible thermal protection for system inflatable re-entry vehicles[J]. Aerospace Materials & Technology, 2003, 33(6): 1-6. | |
| [24] | 吴国庭. 哥伦比亚号防热系统概貌[J]. 国际太空, 2003(6): 26-28. |
| WU Guoting. General situation of Columbia’s thermal protection system[J]. Space International, 2003(6): 26-28. | |
| [25] | 陈世锋. 雷达制导部件高热流密度组件散热技术[J]. 电子机械工程, 2014, 30(2): 12-15. |
| CHEN Shifeng. Heat dissipation technology of high heat flux components on radar guidance assembly[J]. Electro-Mechanical Engineering, 2014, 30(2): 12-15. | |
| [26] | 陈万创. 战术导弹电子设备热设计研究[J]. 环境技术, 1997, 15(2): 24-28. |
| CHEN Wanchuang. Research on the thermal design of tactial missile electronic equipment[J]. Environmental Technology, 1997, 15(2): 24-28. | |
| [27] | BLAND Reginald B. EWING Frederick J. Cooling with endothermic chemical reactions: US3067594[P]. 1962-12-11. |
| [28] | BAYON Alicia, BADER Roman, JAFARIAN Mehdi, et al. Techno-economic assessment of solid-gas thermochemical energy storage systems for solar thermal power applications[J]. Energy, 2018, 149: 473-484. |
| [29] | SUNKU PRASAD J, MUTHUKUMAR P, DESAI Fenil, et al. A critical review of high-temperature reversible thermochemical energy storage systems[J]. Applied Energy, 2019, 254: 113733. |
| [30] | 张映明. 与范特霍夫规则相关的两个问题[J]. 化学教学, 2014 (4): 74-77. |
| [87] | 盛强, 邢玉明, 罗恒. 八水氢氧化钡相变材料储热性能实验[J]. 北京航空航天大学学报, 2014, 40(5): 635-638. |
| SHENG Qiang, XING Yuming, LUO Heng. Experiment on thermal storage performance of barium hydroxide octahydrate phase change material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(5): 635-638. | |
| [88] | 毛发, 章学来, 王友利, 等. 八水合氢氧化钡与相变蓄热容器的相容性研究[J]. 太阳能学报, 2017, 38(8): 2292-2296. |
| MAO Fa, ZHANG Xuelai, WANG Youli, et al. Compatibility study of barium hydroxide octahydrate and phase change heat storage container[J]. Acta Energiae Solaris Sinica, 2017, 38(8): 2292-2296. | |
| [89] | 华维三, 章学来, 刘锋, 等. 相变材料复合八水氢氧化钡的制备及热性能[J]. 化工进展, 2018, 37(11): 4384-4389. |
| HUA Weisan, ZHANG Xuelai, LIU Feng, et al. Preparation and thermal properties of composite barium hydroxide octahydrate for energy storage[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4384-4389. | |
| [90] | LIU Yizhe, LI Xiaoxiang, XU Yangzhe, et al. Carbon-enhanced hydrated salt phase change materials for thermal management applications[J]. Nanomaterials, 2024, 14(13): 1077. |
| [91] | LOUIE David L Y, WANG Yifeng, RAO Rekha, et al. Study of alkaline carbonate cooling to mitigate ex-vessel molten corium accidents[J]. Nuclear Engineering and Design, 2022, 392: 111752. |
| [92] | GALAN Isabel, GLASSER Fredrik P, ANDRADE Carmen. Calcium carbonate decomposition[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(2): 1197-1202. |
| [93] | Laurie ANDRÉ, ABANADES Stéphane. Evaluation and performances comparison of calcium, strontium and barium carbonates during calcination/carbonation reactions for solar thermochemical energy storage[J]. Journal of Energy Storage, 2017, 13: 193-205. |
| [94] | KYAW Kyaw, MATSUDA Hitoki, HASATANI Masanobu. Applicability of carbonation/decarbonation reactions to high-temperature thermal energy storage and temperature upgrading[J]. Journal of Chemical Engineering of Japan, 1996, 29(1): 119-125. |
| [95] | OBERMEIER Jonas, SAKELLARIOU Kyriaki G, TSONGIDIS Nikolaos I, et al. Material development and assessment of an energy storage concept based on the CaO-looping process[J]. Solar Energy, 2017, 150: 298-309. |
| [30] | ZHANG Yingming. Two problems related to van’t Hoff’s rule[J]. Education in Chemistry, 2014 (4): 74-77. |
| [31] | William PRENGLE H, SUN Chihua. Operational chemical storage cycles for utilization of solar energy to produce heat or electric power[J]. Solar Energy, 1976, 18(6): 561-567. |
| [32] | WENTWORTH W E, CHEN E. Simple thermal decomposition reactions for storage of solar thermal energy[J]. Solar Energy, 1976, 18(3): 205-214. |
| [33] | LEVITAN R, ROSIN H, LEVY M. Chemical reactions in a solar furnace—Direct heating of the reactor in a tubular receiver[J]. Solar Energy, 1989, 42(3): 267-272. |
| [34] | Jaume COT-GORES, CASTELL Albert, CABEZA Luisa F. Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 5207-5224. |
| [35] | HARRIES David N, PASKEVICIUS Mark, SHEPPARD Drew A, et al. Concentrating solar thermal heat storage using metal hydrides[J]. Proceedings of the IEEE, 2012, 100(2): 539-549. |
| [36] | ZHANG Jian, YAN Shuai, XIA Guanglin, et al. Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride[J]. Journal of Magnesium and Alloys, 2021, 9(2): 647-657. |
| [37] | FELLET Melissae, BUCKLEY Craig E, PASKEVICIUS Mark, et al. Research on metal hydrides revived for next-generation solutions to renewable energy storage[J]. MRS Bulletin, 2013, 38(12): 1012-1013. |
| [38] | 林贵平, 余敏贤. 金属氢化物热泵及其在载人航天生保系统中的应用[J]. 空间科学学报, 2002, 22(2): 177-183. |
| LIN Gulping, YU Minxian. Metal hydride heat pump and its application in the life support system of manned space flight[J]. Chinese Journal of Space Science, 2002, 22(2): 177-183. | |
| [39] | 顾清之. 镁-氢化镁热化学蓄热系统数值模拟和实验研究[D]. 上海: 上海交通大学, 2013. |
| GU Qingzhi. Numerical simulation and experimental study of magnesium-magnesium hydride themochemical heat storage system[D]. Shanghai: Shanghai Jiao Tong University, 2013. | |
| [96] | SONG Chao, LIU Xianglei, ZHENG Hangbin, et al. Decomposition kinetics of Al- and Fe-doped calcium carbonate particles with improved solar absorbance and cycle stability[J]. Chemical Engineering Journal, 2021, 406: 126282. |
| [97] | RHODES Nathan R, BARDE Amey, RANDHIR Kelvin, et al. Solar thermochemical energy storage through carbonation cycles of SrCO3/SrO supported on SrZrO3 [J]. ChemSusChem, 2015, 8(22): 3793-3798. |
| [98] | MICCIO F, MURRI A N, LANDI E. High-temperature capture of CO2 by strontium oxide sorbents[J]. Industrial & Engineering Chemistry Research, 2016, 55(23): 6696-6707. |
| [99] | BAJAJ Ishan, PENG Xinyue, MARAVELIAS Christos T. Screening and property targeting of thermochemical energy storage materials in concentrated solar power using thermodynamics-based insights and mathematical optimization[J]. RSC Sustainability, 2024, 2(4): 943-960. |
| [100] | BEHRENS Burkhard, Mark MÜLLER. Technologies for thermal protection systems applied on re-usable launcher[J]. Acta Astronautica, 2004, 55(3/4/5/6/7/8/9): 529-536. |
| [101] | 王湘阳. 炭化材料烧蚀机理与热导率预测方法研究[D]. 合肥: 中国科学技术大学, 2021. |
| WANG Xiangyang. Study on ablation mechanism and thermal conductivity inversion of charring material[D]. Hefei: University of Science and Technology of China, 2021. | |
| [102] | 薛华飞. 碳化硅改性碳/酚醛烧蚀材料的制备与烧蚀机理初探[D]. 哈尔滨: 哈尔滨理工大学, 2015. |
| XUE Huafei. Fabrication of SiCp modified carbon/phenolic ablator and preliminary study on its ablation mechanism[D]. Harbin: Harbin University of Science and Technology, 2015. | |
| [103] | ZHU Qianqian, WANG Zhenhao, ZENG Hui, et al. Effects of graphene on various properties and applications of silicone rubber and silicone resin[J]. Composites Part A: Applied Science and Manufacturing, 2021, 142: 106240. |
| [104] | 曹碧雯, 刘宁, 杨杰. 环氧有机硅类烧蚀涂料研究进展[J]. 合成材料老化与应用, 2020, 49(3): 106-109, 77. |
| CAO Biwen, LIU Ning, YANG Jie. Research progress on epoxy silicone ablative coatings[J]. Synthetic Materials Aging and Application, 2020, 49(3): 106-109, 77. | |
| [40] | BAO Zewei. Performance investigation and optimization of metal hydride reactors for high temperature thermochemical heat storage[J]. International Journal of Hydrogen Energy, 2015, 40(16): 5664-5676. |
| [41] | LIU Haizhen, WANG Xinhua, LIU Yongan, et al. Improved hydrogen storage properties of MgH2 by ball milling with AlH3: Preparations, de/rehydriding properties, and reaction mechanisms[J]. Journal of Materials Chemistry A, 2013, 1(40): 12527-12535. |
| [42] | REISER A, BOGDANOVIĆ B, SCHLICHTE K. The application of Mg-based metal-hydrides as heat energy storage systems[J]. International Journal of Hydrogen Energy, 2000, 25(5): 425-430. |
| [43] | BALOGH M P, TIBBETTS G G, PINKERTON F E, et al. Phase changes and hydrogen release during decomposition of sodium alanates[J]. Journal of Alloys and Compounds, 2003, 350(1/2): 136-144. |
| [44] | FAN Xiulin, XIAO Xuezhang, HOU Jiechang, et al. Reversible hydrogen storage behaviors and microstructure of TiC-doped sodium aluminum hydride[J]. Journal of Materials Science, 2009, 44(17): 4700-4704. |
| [45] | Andreas ZÜTTEL, MAURON Philippe, KATO Shunsuke, et al. Storage of renewable energy by reduction of CO2 with hydrogen[J]. Chimia, 2015, 69(5): 264-268. |
| [46] | LAI Qiwen, PASKEVICIUS Mark, SHEPPARD Drew A, et al. Hydrogen storage materials for mobile and stationary applications: Current state of the art[J]. ChemSusChem, 2015, 8(17): 2789-2825. |
| [47] | XIN Fang, XU Min, HUAI Xiulan, et al. Study on isopropanol-acetone-hydrogen chemical heat pump: Liquid phase dehydrogenation of isopropanol using a reactive distillation column[J]. Applied Thermal Engineering, 2013, 58(1/2): 369-373. |
| [48] | 姜舒, 纪惜銮, 杨顺, 等. 一种存放细胞冻存袋的冻存盒: CN204362811U[P]. 2015-06-03. |
| JIANG Shu, JI Xiluan, YANG Shun, et al. The invention discloses a freeze-storage box for storing cell freeze-storage bags:CN204362811U[P]. 2015-06-03. | |
| [49] | KLINSODA Itikorn, PIUMSOMBOON Pornpote. Isopropanol-acetone-hydrogen chemical heat pump: A demonstration unit[J]. Energy Conversion and Management, 2007, 48(4): 1200-1207. |
| [50] | DELANCEY George B, KOVENKLIOGLU Suphan, RITTER Arthur B, et al. Cyclohexane dehydrogenation for thermochemical energy conversion[J]. Industrial & Engineering Chemistry Process Design and Development, 1983, 22(4): 639-645. |
| [105] | 关佩琳, 赵娟. 一种碳硼烷改性有机硅树脂的制备及其耐热性能[J]. 材料科学与工程学报, 2021, 39(2): 311-316. |
| GUAN Peilin, ZHAO Juan. Preparation and heat-resistance of carborane modified silicone resin[J]. Journal of Materials Science and Engineering, 2021, 39(2): 311-316. | |
| [106] | 黄鹏. 有机硅树脂涂层碳纤织物在高温下热力化学耦合分析[D]. 天津: 天津工业大学, 2022. |
| HUANG Peng. Thermo-chemical coupling analysis of organosilicone resin coated carbon fiber fabric at high temperature[D]. Tianjin: Tiangong University, 2022. | |
| [107] | 赵华, 贺辛亥, 王宽喜. 酚醛树脂及其复合材料研究现状[J]. 科技信息, 2009(21): 48-49. |
| ZHAO Hua, HE Xinhai, WANG Kuanxi. Developing trends of phenolic resin abboad[J]. Science & Technology Information, 2009(21): 48-49. | |
| [108] | 梁瑜, 郭亚林, 张祎. 固体火箭发动机喷管用树脂基烧蚀防热材料研究进展[J]. 宇航材料工艺, 2017, 47(2): 1-4, 13. |
| LIANG Yu, GUO Yalin, ZHANG Yi. Progress of ablative polymer composite for solid rocket motor nozzle[J]. Aerospace Materials & Technology, 2017, 47(2): 1-4, 13. | |
| [109] | CHENG Haiming, FAN Zihao, HONG Changqing, et al. Lightweight multiscale hybrid carbon-quartz fiber fabric reinforced phenolic-silica aerogel nanocomposite for high temperature thermal protection[J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106313. |
| [110] | WANG Hebing, QUAN Xiandong, YIN Lianhua, et al. Lightweight quartz fiber fabric reinforced phenolic aerogel with surface densified and graded structure for high temperature thermal protection[J]. Composites Part A: Applied Science and Manufacturing, 2022, 159: 107022. |
| [111] | 时圣波, 梁军, 刘志刚, 等. 高硅氧/酚醛复合材料烧蚀环境下的吸热机理[J]. 固体火箭技术, 2013, 36(1): 113-118. |
| SHI Shengbo, LIANG Jun, LIU Zhigang, et al. Endothermic mechanism of silica/phenolic composite under ablative environment[J]. Journal of Solid Rocket Technology, 2013, 36(1): 113-118. | |
| [112] | LI Jiang, XI Kun, Xiang LYU, et al. Characteristics and formation mechanism of compact/porous structures in char layers of EPDM insulation materials[J]. Carbon, 2018, 127: 498-509. |
| [51] | 张新荣, 史鹏飞, 刘春涛. 甲醇水蒸气重整制氢Cu/ZnO/Al2O3催化剂的研究[J]. 燃料化学学报, 2003, 31(3): 284-288. |
| ZHANG Xinrong, SHI Pengfei, LIU Chuntao. A study on Cu/ZnO/Al2O3 catalysts for hydrogen production by steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2003, 31(3): 284-288. | |
| [52] | 王胜年, 王树东, 吴迪镛,等. 甲醇自热重整制氢反应分析[J]. 燃料化学学报, 2001, 29(3): 238-242. |
| WANG Shengnian, WANG Shudong, WU Diyong, et al. Analysis of autothermal reformer of H2 production for proton exchange membrane fuel cell vehicles[J]. Journal of Fuel Chemistry and Technology, 2001, 29(3): 238-242. | |
| [53] | 许达, 刘启斌, 隋军, 等. 太阳能与甲醇热化学互补的分布式能源系统研究[J]. 工程热物理学报, 2013, 34(9): 1601-1605. |
| XU Da, LIU Qibin, SUI Jun, et al. Research on distributed energy system with solar-methanol thermochemical hybridization[J]. Journal of Engineering Thermophysics, 2013, 34(9): 1601-1605. | |
| [54] | 翟彦青, 唐旭东, 徐新,等. Au-NiO/TiO2催化剂上甲醇自热重整和水蒸汽重整制氢的比较研究[J]. 北京石油化工学院学报, 2010, 18(2): 1-5. |
| ZHAI Yanqing, TANG Xudong, XU Xin, et al. Production of hydrogen via autothermal reforming and steam reforming of methanol on Au-NiO/TiO2 catalyst[J]. Journal of Beijing Institute of Petro-Chemical Technology, 2010, 18(2): 1-5. | |
| [55] | ERVIN Guy. Solar heat storage using chemical reactions[J]. Journal of Solid State Chemistry, 1977, 22(1): 51-61. |
| [56] | YUAN Qinyuan, GU Rong, DING Jing, et al. Heat transfer and energy storage performance of steam methane reforming in a tubular reactor[J]. Applied Thermal Engineering, 2017, 125: 633-643. |
| [57] | BARBIERI Giuseppe, MARIGLIANO Giuseppe, PERRI Giovanni, et al. Conversion-temperature diagram for a palladium membrane reactor. Analysis of an endothermic reaction: Methane steam reforming[J]. Industrial & Engineering Chemistry Research, 2001, 40(9): 2017-2026. |
| [58] | HUANG Longchao, CHEN Dengke, XIE Degang, et al. Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron[J]. Nature Materials, 2023, 22(6): 710-716. |
| [113] | PAUL A, VENUGOPAL S, BINNER J G P, et al. UHTC-carbon fibre composites: Preparation, oxyacetylene torch testing and characterisation[J]. Journal of the European Ceramic Society, 2013, 33(2): 423-432. |
| [114] | WINDHORST Torsten, BLOUNT Gordon. Carbon-carbon composites: A summary of recent developments and applications[J]. Materials & Design, 1997, 18(1): 11-15. |
| [115] | 武七德, 童元丰. 碳化硅材料的氧化及抗氧化研究[J]. 陶瓷科学与艺术, 2002, 36(1): 7-13. |
| WU Qide, TONG Yuanfeng. Study on the oxidation mechanism and the resistance to oxidation of SiC materials[J]. Ceramics Engineering, 2002, 36 (1): 7-13. | |
| [116] | 付前刚, 石慧伦. C/C复合材料表面耐高温抗氧化硅基陶瓷涂层研究进展[J]. 航空材料学报, 2021, 41(3): 1-10. |
| FU Qiangang, SHI Huilun. Research progress of high temperature and oxidation resistant silicon based ceramic coatings on C/C composites[J]. Journal of Aeronautical Materials, 2021, 41(3): 1-10. | |
| [117] | ROY J, CHANDRAS SANTANU DA S, et al. Oxidation behavior of silicon carbide—A review[J]. Reviews on Advanced Materials Science, 2014, 38(1): 29-39. |
| [118] | 齐哲, 郎旭东, 赵春玲, 等. SiC/SiC复合材料失效行为研究进展[J]. 航空材料学报, 2021, 41(3): 25-35. |
| QI Zhe, LANG Xudong, ZHAO Chunling, et al. Research progress on the failure behavior of SiC/SiC composites[J]. Journal of Aeronautical Materials, 2021, 41(3): 25-35. | |
| [119] | 王少雷, 李红, 任慕苏, 等. ZrC-SiC-C/C复合材料的制备及其烧蚀性能[J]. 复合材料学报, 2017, 34(5): 1040-1047. |
| WANG Shaolei, LI Hong, REN Musu, et al. Fabrication and ablation performances of ZrC-SiC-C/C composites[J]. Acta Materiae Compositae Sinica, 2017, 34(5): 1040-1047. | |
| [120] | 王德文, 沈昊东, 王丽, 等. 碳/碳-碳化硅复合材料在高超音速射流中性能研究[J]. 兵器装备工程学报, 2023, 44(6): 299-303. |
| [59] | WANG Ganzhou, MITSOS Alexander, MARQUARDT Wolfgang. Conceptual design of ammonia-based energy storage system: System design and time-invariant performance[J]. AIChE Journal, 2017, 63(5): 1620-1637. |
| [60] | 李鹏. 空预器热风吹扫防堵技术关键点的深度剖析:2021年中国电机工程学会论文集[C]. 2021. |
| LI Peng. Deep analysis on key points of hot air blowing and blocking prevention technology for air preheater: 2021 Chinese Society of Electrical Engineering Annual Conference Proceeding[C]. 2021. | |
| [61] | 范芸珠, 曹发海. 硫酸铵热分解反应动力学研究[J]. 高校化学工程学报, 2011, 25(2): 341-346. |
| FAN Yunzhu, CAO Fahai. Thermal decomposition kinetics of ammonium sulfate[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(2): 341-346. | |
| [62] | 杨一凡. 氨制冷技术的应用现状及发展趋势[J]. 制冷学报, 2007, 28(4): 12-19. |
| YANG Yifan. Application and development of ammonia refrigeration technology[J]. Journal of Refrigeration, 2007, 28(4): 12-19. | |
| [63] | L’VOV Boris V, NOVICHIKHIN Alexander V, DYAKOV Alexey O. Mechanism of thermal decomposition of magnesium hydroxide[J]. Thermochimica Acta, 1998, 315(2): 135-143. |
| [64] | 王涛. 氧化钙/氢氧化钙热化学储热系统性能强化及反应特性理论与实验研究[D]. 上海: 上海交通大学, 2020. |
| WANG Tao. Theoretical and experimental study on performance enhancement and reaction charcteristics of CaO/Ca(OH)2 thermochemical heat storage system[D]. Shanghai: Shanghai Jiao Tong University, 2020. | |
| [65] | SHKATULOV Alexandr, KRIEGER Tamara, ZAIKOVSKII Vladimir, et al. Doping magnesium hydroxide with sodium nitrate: A new approach to tune the dehydration reactivity of heat-storage materials[J]. ACS Applied Materials & Interfaces, 2014, 6(22): 19966-19977. |
| [66] | CHEN Dun, GAO Xiang, DOLLIMORE David. The application of non-isothermal methods of kinetic analysis to the decomposition of calcium hydroxide[J]. Thermochimica Acta, 1993, 215: 65-82. |
| [120] | WANG Dewen, SHEN Haodong, WANG Li, et al. Research on the properties of carbon /carbon-silicon carbide (C/C-SiC) composites in hypersonic jets[J]. Journal of Ordnance Equipment Engineering, 2023, 44(6): 299-303. |
| [121] | Brian N COX, Frank W ZOK. Advances in ceramic composites reinforced by continuous fibers[J]. Current Opinion in Solid State and Materials Science, 1996, 1(5): 666-673. |
| [122] | LIU Yin, ZHANG Zhifan, HALLORAN John, et al. Yttrium aluminum garnet fibers from metalloorganic precursors[J]. Journal of the American Ceramic Society, 1998, 81(3): 629-645. |
| [123] | TANG Sufang, DENG Jingyi, WANG Shijun, et al. Ablation behaviors of ultra-high temperature ceramic composites[J]. Materials Science and Engineering: A, 2007, 465(1/2): 1-7. |
| [124] | 杨曦凝. ZrB2-SiC陶瓷高温氧化机理及力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2008. |
| YANG Xining. Study on oxidation mechanism and mechanical properties of ZrB2-SiC ceramic at high temperature[D]. Harbin: Harbin Institute of Technology, 2008. | |
| [125] | 李学英, 张幸红, 韩杰才, 等. Y2O3掺杂ZrB2-SiC基超高温陶瓷的抗烧蚀性能[J]. 稀有金属材料与工程, 2011, 40(5): 820-823. |
| LI Xueying, ZHANG Xinghong, HAN Jiecai, et al. Ablation resistance behavior of ZrB2-SiC ultra-high temperature ceramics with Y2O3 addition[J]. Rare Metal Materials and Engineering, 2011, 40(5): 820-823. | |
| [126] | FAHRENHOLTZ William G, HILMAS Gregory E, TALMY Inna G, et al. Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society, 2007, 90(5): 1347-1364. |
| [127] | GUO Shuqi. Densification of ZrB2-based composites and their mechanical and physical properties: A review[J]. Journal of the European Ceramic Society, 2009, 29(6): 995-1011. |
| [128] | 梁琦, 肖东, 林慧兴, 等. 电子基板用玻璃/陶瓷复合材料的低温共烧与性能[J]. 现代技术陶瓷, 2017, 38(2): 96-107. |
| LIANG Qi, XIAO Dong, LIN Huixing, et al. Low-temperature co-fired and properties of ceramics/glass composites for electronic substrates[J]. Advanced Ceramics, 2017, 38(2): 96-107. | |
| [67] | MURTHY M S, RAGHAVENDRACHAR P, SRIRAM S V. Thermal decomposition of doped calcium hydroxide for chemical energy storage[J]. Solar Energy, 1986, 36(1): 53-62. |
| [68] | DARKWA K. Experimental studies of a thermochemical store for automobile engines[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1997, 211(5): 347-360. |
| [129] | LANDER H, NIXON A C. Endothermic fuels for hypersonic vehicles[J]. Journal of Aircraft, 1971, 8(4): 200-207. |
| [130] | WANG Chong, DU Chongpeng, SHANG Jianxuan, et al. A comprehensive review of the thermal cracking stability of endothermic hydrocarbon fuels[J]. Journal of Analytical and Applied Pyrolysis, 2023, 169: 105867. |
| [131] | 房振全, 姜书根, 张兴华, 等. 高热沉碳氢喷气燃料吸热反应研究进展[J]. 化学进展, 2023, 35(12): 1895-1910. |
| FANG Zhenquan, JIANG Shugen, ZHANG Xinghua, et al. Endothermic reaction of high heat sink hydrocarbon jet fuel[J]. Progress in Chemistry, 2023, 35(12): 1895-1910. | |
| [132] | 顾志华. 乙醇制乙烯技术现状及展望[J]. 化工进展, 2006, 25 (8): 847-851. |
| GU Zhihua. Development and perspective of ethylene from ethanol[J]. Chemical Industry and Engineering Progress, 2006, 25(8): 847-851. | |
| [133] | CARRILLO Alfonso J, José GONZÁLEZ-AGUILAR, ROMERO Manuel, et al. Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials[J]. Chemical Reviews, 2019, 119(7): 4777-4816. |
| [1] | 洪康, 张冲, 马宏莉, 孙雍荣, 蒋丽群, 包桂蓉. 生物质硬炭基钠离子电池负极材料研究进展[J]. 化工进展, 2025, 44(S1): 340-349. |
| [2] | 吴刚, 沈珍华, 焦凤, 何永清. 非均匀热流下金属泡沫复合相变材料的熔化传热特性[J]. 化工进展, 2025, 44(S1): 388-399. |
| [3] | 王蓝欣, 李飞, 钱亚男, 田于杰, 申峻, 王维. 固定床反应器不同水分煤热解数值模拟[J]. 化工进展, 2025, 44(8): 4513-4525. |
| [4] | 任鹏锟, 仲兆平, 张小霓, 杨宇轩, 冉真真. 污泥-木屑基活性炭的制备及其对苯系VOCs的吸附性能[J]. 化工进展, 2025, 44(6): 3031-3040. |
| [5] | 张春华, 王国清, 张利军, 鲁波娜, 周丛, 刘俊杰. 管内扭带强化传热技术:涡流结构调控的进展与挑战[J]. 化工进展, 2025, 44(6): 3163-3174. |
| [6] | 张莹, 郑雪梅, 马爱元, 田时泓. 聚乙烯常规及微波催化热解产物分布特征的研究进展[J]. 化工进展, 2025, 44(6): 3224-3237. |
| [7] | 孙仲顺, 刘根, 程春昱, 李美昕, 杨宪坛, 吴志强, 杨伯伦. 生物质热化学转化制备绿氢研究进展[J]. 化工进展, 2025, 44(5): 2667-2682. |
| [8] | 安明泽, 张兵兵, 王盛, 陈蔚洁, 刘世旺, 薛斌, 徐国敏, 秦舒浩. 碳基定型复合相变材料的研究进展[J]. 化工进展, 2025, 44(4): 2102-2118. |
| [9] | 毛宇炜, 薛志亮, 洪钦, 付鑫, 金建龙, 周永刚, 黄群星. 废轮胎热解油气喷水急冷特性[J]. 化工进展, 2025, 44(3): 1263-1274. |
| [10] | 赖俊华, 潘大伟, 巨晓洁, 刘壮, 谢锐, 汪伟, 褚良银. 光栅结构对智能凝胶光栅传感器检测性能的影响规律[J]. 化工进展, 2025, 44(3): 1578-1587. |
| [11] | 张喆, 纪献兵, 杨聿昊, 刘家璇, 姚泊丞. 多尺度结构烧结沟槽表面沸腾传热性能[J]. 化工进展, 2025, 44(2): 669-676. |
| [12] | 赵佳琪, 黄亚继, 李志远, 朱志成, 祁帅杰, 高嘉炜, 刘俊, 张煜尧. 污泥同农林废弃物共热解重金属迁移转化特性[J]. 化工进展, 2025, 44(2): 1064-1075. |
| [13] | 祁帅杰, 黄亚继, 徐鹏程, 齐景伟, 李志远, 时浩, 赵佳琪, 高嘉炜, 刘俊, 张煜尧. 废弃木质建筑模板与典型生物质热解产物分布及特性对比[J]. 化工进展, 2025, 44(2): 1120-1128. |
| [14] | 李亚辉, 刘陶然, 朱瑞松, 曹靖, 刘铭晖, 李应文, 胡雪生, 高飞. 氢化热解法制备高纯碳酸锂的研究进展[J]. 化工进展, 2025, 44(11): 6133-6143. |
| [15] | 田旭, 邵敬爱, 蒋好, 张俊杰, 陈剑峰, 杨海平, 陈汉平. 生物质热解制备芳烃的研究进展[J]. 化工进展, 2025, 44(11): 6187-6199. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |