化工进展 ›› 2025, Vol. 44 ›› Issue (11): 6161-6173.DOI: 10.16085/j.issn.1000-6613.2024-1561
• 化工过程与装备 • 上一篇
邢雷1,2,3(
), 刘铎1, 蒋明虎1,2(
), 赵立新1,2, 李新亚1, 高扬4
收稿日期:2024-09-25
修回日期:2025-02-24
出版日期:2025-11-25
发布日期:2025-12-08
通讯作者:
蒋明虎
作者简介:邢雷(1990—),男,博士,教授,博士生导师,研究方向为旋流分离理论及应用技术、同井注采技术。E-mail:Nepuxinglei@163.com。
基金资助:
XING Lei1,2,3(
), LIU Duo1, JIANG Minghu1,2(
), ZHAO Lixin1,2, LI Xinya1, GAO Yang4
Received:2024-09-25
Revised:2025-02-24
Online:2025-11-25
Published:2025-12-08
Contact:
JIANG Minghu
摘要:
同井注采技术是实现油田中后期经济开采的重要举措,采出液含气是制约同井注采规模化应用的关键问题之一。为实现狭窄套管空间内气液的高效分离,拓宽含气工况下同井注采技术的适用范围,本文基于旋流分离原理设计了一种轴入式井下气液旋流分离器(axial-inlet downhole gas-liquid hydrocyclone,AIDGLC)。利用PB实验设计、最陡爬坡设计和响应曲面设计相结合的实验方法,对AIDGLC结构参数进行优化研究,并针对优化后结构开展不同操作参数的适用性分析。结果表明,AIDGLC的显著性结构参数排序为旋流腔长度L2、溢流管插入长度L6、底流管长度L5、溢流管内径D1,得出使分离效率达到最大值的显著性结构参数匹配方案为L2=284.92mm、L5=100mm、L6=3.80mm、D1=42.88mm。优化后结构在含气量为5%、流量为5m3/h、分流比为40%时,气相分离效率达最大值99.86%。研究结果为在含气工况下井下气液分离器的研制及应用提供了一定的借鉴和参考。
中图分类号:
邢雷, 刘铎, 蒋明虎, 赵立新, 李新亚, 高扬. 轴入式井下气液旋流分离器结构优化与性能分析[J]. 化工进展, 2025, 44(11): 6161-6173.
XING Lei, LIU Duo, JIANG Minghu, ZHAO Lixin, LI Xinya, GAO Yang. Structure optimization and performance analysis of axial-inlet downhole gas-liquid hydrocyclone[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6161-6173.
| 结构参数 | 尺寸/mm |
|---|---|
| 螺旋流道长度L1 | 200 |
| 柱段旋流腔长度L2 | 500 |
| 一级锥段长度L3 | 80 |
| 二级锥段长度L4 | 150 |
| 底流管长度L5 | 200 |
| 溢流管插入长度L6 | 10 |
| 溢流管内径D1 | 48 |
| 一级锥段底部外径D2 | 44 |
| 二级锥段底部外径D3 | 64 |
表1 AIDGLC主要结构参数尺寸
| 结构参数 | 尺寸/mm |
|---|---|
| 螺旋流道长度L1 | 200 |
| 柱段旋流腔长度L2 | 500 |
| 一级锥段长度L3 | 80 |
| 二级锥段长度L4 | 150 |
| 底流管长度L5 | 200 |
| 溢流管插入长度L6 | 10 |
| 溢流管内径D1 | 48 |
| 一级锥段底部外径D2 | 44 |
| 二级锥段底部外径D3 | 64 |
| 因素 | 符号 | 水平/mm | 锥度/mm | |
|---|---|---|---|---|
| 低(-1) | 高(+1) | |||
| 螺旋流道长度L1 | A | 160 | 240 | 80 |
| 柱段旋流腔长度L2 | B | 400 | 600 | 200 |
| 一级锥段长度L3 | C | 70 | 90 | 20 |
| 二级锥段长度L4 | D | 140 | 160 | 20 |
| 底流管长度L5 | E | 160 | 240 | 80 |
| 溢流管插入长度L6 | F | 5 | 15 | 10 |
| 溢流管内径D1 | G | 32 | 48 | 16 |
| 一级锥段底部外径D2 | H | 40 | 48 | 8 |
| 二级锥段底部外径D3 | J | 60 | 68 | 8 |
表2 PB实验因素及水平取值
| 因素 | 符号 | 水平/mm | 锥度/mm | |
|---|---|---|---|---|
| 低(-1) | 高(+1) | |||
| 螺旋流道长度L1 | A | 160 | 240 | 80 |
| 柱段旋流腔长度L2 | B | 400 | 600 | 200 |
| 一级锥段长度L3 | C | 70 | 90 | 20 |
| 二级锥段长度L4 | D | 140 | 160 | 20 |
| 底流管长度L5 | E | 160 | 240 | 80 |
| 溢流管插入长度L6 | F | 5 | 15 | 10 |
| 溢流管内径D1 | G | 32 | 48 | 16 |
| 一级锥段底部外径D2 | H | 40 | 48 | 8 |
| 二级锥段底部外径D3 | J | 60 | 68 | 8 |
| 实验组 | 因素 | E/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| A(L1) | B(L2) | C(L3) | D(L4) | E(L5) | F(L6) | G(D1) | H(D2) | J(D3) | ||
| 1 | 240 | 600 | 70 | 160 | 240 | 15 | 32 | 40 | 60 | 93.690 |
| 2 | 160 | 600 | 90 | 140 | 240 | 15 | 48 | 40 | 60 | 93.942 |
| 3 | 240 | 400 | 90 | 160 | 160 | 15 | 48 | 48 | 60 | 95.596 |
| 4 | 160 | 600 | 70 | 160 | 240 | 5 | 48 | 48 | 68 | 95.088 |
| 5 | 160 | 400 | 90 | 140 | 240 | 15 | 32 | 48 | 68 | 95.232 |
| 6 | 160 | 400 | 70 | 160 | 160 | 15 | 48 | 40 | 68 | 95.777 |
| 7 | 240 | 400 | 70 | 140 | 240 | 5 | 48 | 48 | 60 | 95.997 |
| 8 | 240 | 600 | 70 | 140 | 160 | 15 | 32 | 48 | 68 | 94.526 |
| 9 | 240 | 600 | 90 | 140 | 160 | 5 | 48 | 40 | 68 | 95.299 |
| 10 | 160 | 600 | 90 | 160 | 160 | 5 | 32 | 48 | 60 | 94.655 |
| 11 | 240 | 400 | 90 | 160 | 240 | 5 | 32 | 40 | 68 | 95.724 |
| 12 | 160 | 400 | 70 | 140 | 160 | 5 | 32 | 40 | 60 | 96.224 |
表3 PB实验设计及模拟结果
| 实验组 | 因素 | E/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| A(L1) | B(L2) | C(L3) | D(L4) | E(L5) | F(L6) | G(D1) | H(D2) | J(D3) | ||
| 1 | 240 | 600 | 70 | 160 | 240 | 15 | 32 | 40 | 60 | 93.690 |
| 2 | 160 | 600 | 90 | 140 | 240 | 15 | 48 | 40 | 60 | 93.942 |
| 3 | 240 | 400 | 90 | 160 | 160 | 15 | 48 | 48 | 60 | 95.596 |
| 4 | 160 | 600 | 70 | 160 | 240 | 5 | 48 | 48 | 68 | 95.088 |
| 5 | 160 | 400 | 90 | 140 | 240 | 15 | 32 | 48 | 68 | 95.232 |
| 6 | 160 | 400 | 70 | 160 | 160 | 15 | 48 | 40 | 68 | 95.777 |
| 7 | 240 | 400 | 70 | 140 | 240 | 5 | 48 | 48 | 60 | 95.997 |
| 8 | 240 | 600 | 70 | 140 | 160 | 15 | 32 | 48 | 68 | 94.526 |
| 9 | 240 | 600 | 90 | 140 | 160 | 5 | 48 | 40 | 68 | 95.299 |
| 10 | 160 | 600 | 90 | 160 | 160 | 5 | 32 | 48 | 60 | 94.655 |
| 11 | 240 | 400 | 90 | 160 | 240 | 5 | 32 | 40 | 68 | 95.724 |
| 12 | 160 | 400 | 70 | 140 | 160 | 5 | 32 | 40 | 60 | 96.224 |
| 实验组 | L2/mm | L5/mm | L6/mm | D1/mm | E/% |
|---|---|---|---|---|---|
| 1 | 390 | 155 | 4.8 | 33.5 | 95.271 |
| 2 | 380 | 150 | 4.6 | 35 | 95.942 |
| 3 | 370 | 145 | 4.4 | 36.5 | 96.353 |
| 4 | 360 | 140 | 4.2 | 38 | 96.492 |
| 5 | 350 | 135 | 4 | 39.5 | 96.626 |
| 6 | 340 | 130 | 3.8 | 41 | 96.691 |
| 7 | 330 | 125 | 3.6 | 42.5 | 96.755 |
| 8 | 320 | 120 | 3.4 | 44 | 96.898 |
| 9 | 310 | 115 | 3.2 | 45.5 | 97.117 |
| 10 | 300 | 110 | 3 | 47 | 96.942 |
| 11 | 290 | 105 | 2.8 | 48.5 | 96.684 |
| 12 | 280 | 100 | 2.6 | 50 | 96.433 |
| 13 | 270 | 95 | 2.4 | 51.5 | 95.925 |
表4 最陡爬坡实验设计及分离效率测试结果
| 实验组 | L2/mm | L5/mm | L6/mm | D1/mm | E/% |
|---|---|---|---|---|---|
| 1 | 390 | 155 | 4.8 | 33.5 | 95.271 |
| 2 | 380 | 150 | 4.6 | 35 | 95.942 |
| 3 | 370 | 145 | 4.4 | 36.5 | 96.353 |
| 4 | 360 | 140 | 4.2 | 38 | 96.492 |
| 5 | 350 | 135 | 4 | 39.5 | 96.626 |
| 6 | 340 | 130 | 3.8 | 41 | 96.691 |
| 7 | 330 | 125 | 3.6 | 42.5 | 96.755 |
| 8 | 320 | 120 | 3.4 | 44 | 96.898 |
| 9 | 310 | 115 | 3.2 | 45.5 | 97.117 |
| 10 | 300 | 110 | 3 | 47 | 96.942 |
| 11 | 290 | 105 | 2.8 | 48.5 | 96.684 |
| 12 | 280 | 100 | 2.6 | 50 | 96.433 |
| 13 | 270 | 95 | 2.4 | 51.5 | 95.925 |
| 因素 | 符号 | 单位 | 水平 | ||
|---|---|---|---|---|---|
| 低水平(-1) | 中心点(0) | 高水平(+1) | |||
| 柱段旋流腔长度L2 | B | mm | 280 | 310 | 340 |
| 底流管长度L5 | E | mm | 100 | 115 | 130 |
| 溢流管插入长度L6 | F | mm | 2.6 | 3.2 | 3.8 |
| 溢流管内径D1 | G | mm | 41 | 45.5 | 50 |
表5 BBD设计因素与水平
| 因素 | 符号 | 单位 | 水平 | ||
|---|---|---|---|---|---|
| 低水平(-1) | 中心点(0) | 高水平(+1) | |||
| 柱段旋流腔长度L2 | B | mm | 280 | 310 | 340 |
| 底流管长度L5 | E | mm | 100 | 115 | 130 |
| 溢流管插入长度L6 | F | mm | 2.6 | 3.2 | 3.8 |
| 溢流管内径D1 | G | mm | 41 | 45.5 | 50 |
| 类型 | 自由度 | 离散平方和 | 均方 | F | P |
|---|---|---|---|---|---|
| 模型 | 14 | 9.48 | 0.68 | 13.84 | <0.0001 |
| x1 | 1 | 6.35 | 6.35 | 129.84 | <0.0001 |
| x2 | 1 | 1.02 | 1.02 | 20.76 | 0.0004 |
| x3 | 1 | 0.81 | 0.81 | 16.48 | 0.0012 |
| x4 | 1 | 0.30 | 0.30 | 6.20 | 0.0259 |
| x1x2 | 1 | 1.634×10-4 | 1.634×10-4 | 3.341×10-3 | 0.9547 |
| x1x3 | 1 | 2.782×10-4 | 2.782×10-4 | 5.688×10-3 | 0.9410 |
| x1x4 | 1 | 1.538×10-4 | 1.538×10-4 | 3.143×10-3 | 0.9561 |
| x2x3 | 1 | 0.24 | 0.24 | 5.01 | 0.0420 |
| x2x4 | 1 | 4.290×10-5 | 4.290×10-5 | 8.770×10-4 | 0.9768 |
| x3x4 | 1 | 0.46 | 0.46 | 9.34 | 0.0085 |
| x | 1 | 0.032 | 0.032 | 0.65 | 0.4338 |
| x | 1 | 0.018 | 0.018 | 0.36 | 0.5573 |
| x | 1 | 0.22 | 0.22 | 4.44 | 0.0536 |
| x | 1 | 6.486×10-3 | 6.486×10-3 | 0.13 | 0.7212 |
| 残差 | 14 | 0.68 | 0.049 | ||
| 失拟项 | 10 | 0.68 | 0.068 | ||
| 纯误差 | 4 | 0 | 0 | ||
| 总计 | 28 | 10.16 |
表6 回归模型方差分析结果
| 类型 | 自由度 | 离散平方和 | 均方 | F | P |
|---|---|---|---|---|---|
| 模型 | 14 | 9.48 | 0.68 | 13.84 | <0.0001 |
| x1 | 1 | 6.35 | 6.35 | 129.84 | <0.0001 |
| x2 | 1 | 1.02 | 1.02 | 20.76 | 0.0004 |
| x3 | 1 | 0.81 | 0.81 | 16.48 | 0.0012 |
| x4 | 1 | 0.30 | 0.30 | 6.20 | 0.0259 |
| x1x2 | 1 | 1.634×10-4 | 1.634×10-4 | 3.341×10-3 | 0.9547 |
| x1x3 | 1 | 2.782×10-4 | 2.782×10-4 | 5.688×10-3 | 0.9410 |
| x1x4 | 1 | 1.538×10-4 | 1.538×10-4 | 3.143×10-3 | 0.9561 |
| x2x3 | 1 | 0.24 | 0.24 | 5.01 | 0.0420 |
| x2x4 | 1 | 4.290×10-5 | 4.290×10-5 | 8.770×10-4 | 0.9768 |
| x3x4 | 1 | 0.46 | 0.46 | 9.34 | 0.0085 |
| x | 1 | 0.032 | 0.032 | 0.65 | 0.4338 |
| x | 1 | 0.018 | 0.018 | 0.36 | 0.5573 |
| x | 1 | 0.22 | 0.22 | 4.44 | 0.0536 |
| x | 1 | 6.486×10-3 | 6.486×10-3 | 0.13 | 0.7212 |
| 残差 | 14 | 0.68 | 0.049 | ||
| 失拟项 | 10 | 0.68 | 0.068 | ||
| 纯误差 | 4 | 0 | 0 | ||
| 总计 | 28 | 10.16 |
| 随机实验组 | L2/mm | L5/mm | L6/mm | D1/mm | E/% |
|---|---|---|---|---|---|
| 1 | 305 | 120 | 3.1 | 45 | 97.2295 |
| 2 | 318 | 115 | 2.8 | 46 | 97.1714 |
| 3 | 329 | 105 | 3.7 | 42 | 97.3951 |
| 4 | 294 | 127 | 3.5 | 43 | 97.1689 |
| 5 | 337 | 122 | 3.0 | 48 | 97.3562 |
| 6 | 287 | 110 | 3.3 | 50 | 97.4032 |
| 7 | 301 | 125 | 3.6 | 44 | 97.2929 |
| 8 | 332 | 116 | 3.2 | 49 | 97.4380 |
| 9 | 320 | 103 | 2.7 | 47 | 97.1848 |
| 10 | 311 | 128 | 2.9 | 41 | 97.0616 |
表7 随机验证组结构参数及模拟结果
| 随机实验组 | L2/mm | L5/mm | L6/mm | D1/mm | E/% |
|---|---|---|---|---|---|
| 1 | 305 | 120 | 3.1 | 45 | 97.2295 |
| 2 | 318 | 115 | 2.8 | 46 | 97.1714 |
| 3 | 329 | 105 | 3.7 | 42 | 97.3951 |
| 4 | 294 | 127 | 3.5 | 43 | 97.1689 |
| 5 | 337 | 122 | 3.0 | 48 | 97.3562 |
| 6 | 287 | 110 | 3.3 | 50 | 97.4032 |
| 7 | 301 | 125 | 3.6 | 44 | 97.2929 |
| 8 | 332 | 116 | 3.2 | 49 | 97.4380 |
| 9 | 320 | 103 | 2.7 | 47 | 97.1848 |
| 10 | 311 | 128 | 2.9 | 41 | 97.0616 |
| [1] | JIA Deli, ZHANG Jiqun, SUN Yufei, et al. Collaboration between oil development and water/power consumption in high-water-cut oilfields[J]. Sustainability, 2023, 15(14): 1-24. |
| [2] | PAN Shaowei, WANG Zhaoyang, LUO Haining. Simulation research on microscopic remaining oil distribution in high water cut oilfield[J]. IOP Conference Series: Earth and Environmental Science, 2021, 647(1): 012074. |
| [3] | LIU Xiaona. Analysis of measures to improve the technical level of late development of high water cut oilfield[J]. IOP Conference Series: Earth and Environmental Science, 2021, 781(2): 022054. |
| [4] | 刘合, 郝忠献, 王连刚, 等. 人工举升技术现状与发展趋势[J]. 石油学报, 2015, 36(11): 1441-1448. |
| LIU He, HAO Zhongxian, WANG Liangang, et al. Current technical status and development trend of artificial lift[J]. Acta Petrolei Sinica, 2015, 36(11): 1441-1448. | |
| [5] | 刘合, 高扬, 裴晓含, 等. 旋流式井下油水分离同井注采技术发展现状及展望[J]. 石油学报, 2018, 39(4): 463-471. |
| LIU He, GAO Yang, PEI Xiaohan, et al. Progress and prospect of downhole cyclone oil-water separation with single-well injection-production technology[J]. Acta Petrolei Sinica, 2018, 39(4): 463-471. | |
| [6] | ZHAN Min, CHENG Xinping, YANG Wanyou, et al. Numerical investigation on the swirler parameters for an axial liquid-liquid hydrocyclone[J]. IOP Conference Series: Earth and Environmental Science, 2021, 675(1): 012210. |
| [7] | 张春影.轴流导叶式水力旋流器结构设计与性能研究[D]. 东营:中国石油大学(华东), 2021. |
| ZHANG Chunying. Research on the structure design and performance of axial flow guide vane hydrocyclone[D]. Dongying: China University of Petroleum (East China), 2021. | |
| [8] | ZENG Xiaobo, ZHAO Le, ZHAO Weiguang, et al. Experimental study on a novel axial separator for oil-water separation[J]. Industrial Engineering Chemistry Research, 2020, 59(48): 21177-21186. |
| [9] | 贾朋, 陈家庆, 蔡小垒, 等. 基于CFD-PBM模拟水力旋流器油水分离特性研究[J]. 石油化工高等学校学报, 2021, 34(4): 58-65. |
| JIA Peng, CHEN Jiaqing, CAI Xiaolei, et al. Study on oil-water separation characteristics of hydrocyclone based on CFD-PBM numerical simulation[J]. Journal of Petrochemical Universities, 2021, 34(4): 58-65. | |
| [10] | QIU Shunzuo, WANG Guorong, ZHOU Shouwei, et al. The downhole hydrocyclone separator for purifying natural gas hydrate: Structure design, optimization, and performance[J]. Separation Science and Technology, 2020, 55(3): 564-574. |
| [11] | ZHAO Wei, LI Jianping, ZHANG Tong, et al. Strengthened oil-water separation by swirl vane hydrocyclone based on short-circuit flow regulation[J]. Journal of Water Process Engineering, 2024, 65: 105773. |
| [12] | 邢雷, 李金煜, 赵立新, 等. 基于响应面法的井下旋流分离器结构优化[J]. 中国机械工程, 2021, 32(15): 1818-1826. |
| XING Lei, LI Jinyu, ZHAO Lixin, et al. Structural optimization of downhole hydrocyclones based on response surface methodology[J]. China Mechanical Engineering, 2021, 32(15): 1818-1826. | |
| [13] | 赵传伟, 李增亮, 董祥伟, 等. 井下双级串联式水力旋流器数值模拟与实验[J]. 石油学报, 2014, 35(3): 551-557. |
| ZHAO Chuanwei, LI Zengliang, DONG Xiangwei, et al. Numerical simulation and experiment of downhole two-stage tandem hydrocyclone[J]. Acta Petrolei Sinica, 2014, 35(3): 551-557. | |
| [14] | 付伟. 采出液含砂对井下油水旋流分离器的影响研究[D]. 大庆: 东北石油大学, 2016. |
| FU Wei. Study on the influence of sand-containing produced liquid on downhole oil-water hydrocyclone separator[D]. Daqing: Northeast Petroleum University, 2016. | |
| [15] | 王志杰, 李枫, 赵立新. 含聚浓度对旋流器性能影响的数值模拟与试验[J]. 化工进展, 2019, 38(12): 5287-5296. |
| WANG Zhijie, LI Feng, ZHAO Lixin. Numerical simulation and experimental study on the effect of polymer concentration on hydrocyclone performance[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5287-5296. | |
| [16] | 宫磊磊. 采出液含气对井下油水旋流分离器的影响研究[D]. 大庆: 东北石油大学, 2015. |
| GONG Leilei. The research of produced liquid gas-containing having influence on downhole oil-water hydrocyclone separator[D]. Daqing: Northeast Petroleum University, 2015. | |
| [17] | WANG Shoubo, Luis Gomez E., Ram Mohan S., et al. Gas-liquid cylindrical cyclone (GLCC©) compact separators for wet gas applications[J]. Journal of Energy Resources Technology, 2003, 125(1): 43-50. |
| [18] | 张明, 孙欢, 王强强, 等. 管式旋流气液分离器流场特性与分离性能研究[J]. 过程工程学报, 2024, 24(7): 772-782. |
| ZHANG Ming, SUN Huan, WANG Qiangqiang, et al. Study of flow field characteristics and separation performance of inline cyclone gas-liquid separator[J]. The Chinese Journal of Process Engineering, 2024, 24(7): 772-782. | |
| [19] | MENG Fanchen, SHI Shiying, and MA Naiqing. Study of the performance of a new kind of downhole gas-liquid separation with high gas content[J]. Journal of Energy and Natural Resources, 2019, 8(1): 45-49. |
| [20] | 王振波, 李腾, 孙治谦, 等. 级联式气液旋流分离器数值模拟[J]. 中国石油大学学报(自然科学版), 2023, 47(6): 121-129. |
| WANG Zhenbo, LI Teng, SUN Zhiqian, et al. Numerical simulation on cascaded gas-liquid cyclone separator[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(6): 121-129. | |
| [21] | ZHOU Yuhang, CHEN Jianyi, WANG Yaan, et al. Experimental and numerical study on the performance of a new dual-inlet gas-liquid cylindrical cyclone (GLCC) based on flow pattern conditioning[J]. Chemical Engineering Journal, 2023, 453: 139778. |
| [22] | 郑春峰, 杨万有, 孟熙然, 等. 海上高含气井新型井下气液分离器设计及性能评价[J]. 中国海上油气, 2020, 32(6): 128-135. |
| ZHENG Chunfeng, YANG Wanyou, MENG Xiran, et al. Design and performance evaluation of a novel downhole gas-liquid separator for offshore high gas bearing wells[J]. China Offshore Oil and Gas, 2020, 32(6): 128-135. | |
| [23] | LAN Wenjian, WANG Hanxiang, LI Yuquan, et al. Numerical and experimental investigation on a downhole gas-liquid separator for natural gas hydrate exploitation[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109743. |
| [24] | 耿坤, 孙治谦, 李腾, 等. 级联式气-液旋流分离器流动特性数值研究[J]. 石油学报(石油加工), 2024, 40(1): 193-204. |
| GENG Kun, SUN Zhiqian, LI Teng, et al. Numerical study of the flow characteristics in a cascade gas-liquid cyclone separator[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2024, 40(1): 193-204. | |
| [25] | 宋家恺, 孔令真, 陈家庆, 等. 脱液型管式气液分离器旋流分离段内液膜流动和分离特性[J]. 化工进展, 2024, 43(8): 4297-4306. |
| SONG Jiakai, KONG Lingzhen, CHEN Jiaqing . et al. Liquid film flow and separation characteristics in the swirl separation section of a tubular deliquidiser[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4297-4306. | |
| [26] | 刘海龙. 同井注采井下气液分离器结构优化设计及流场分析[D]. 大庆: 东北石油大学, 2022. |
| LIU Hailong. Structural optimization design and flow field analysis of downhole gas-liquid separator for injection-production in the single well[D]. Daqing: Northeast Petroleum University, 2022. | |
| [27] | 邢雷, 蒋明虎, 张勇, 等. 入口形式对旋流器内油滴聚结特性影响研究[J]. 高校化学工程学报, 2018, 32 (6): 1322-1331. |
| XING Lei, JIANG Minghu, ZHANG Yong, et al. Effects of inlet structure on oil droplet coalescence in hydrocyclone[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32 (6): 1322-1331. | |
| [28] | 邢雷, 苗春雨, 蒋明虎 等. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
| XING Lei, MIAO Chunyu, JIANG Minghu, et al. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone[J]. CIESC Journal, 2023, 74(8): 3394-3406. | |
| [29] | 邢雷, 关帅, 蒋明虎, 等. 高气液比井下气液旋流分离器结构设计与性能分析[J]. 化工学报, 2024, 75(3): 900-913. |
| XING Lei, GUAN Shuai, JIANG Minghu, et al. Study on structure optimization and performance of downhole gas-liquid hydrocyclone under high gas-liquid ratio[J]. CIESC Journal, 2024, 75(3): 900-913. | |
| [30] | AZADI Mehdi, AZADI Mohsen, MOHEBBI Ali. A CFD study of the effect of cyclone size on its performance parameters[J]. Journal of Hazardous Materials, 2010, 182(1/2/3): 835-841. |
| [31] | 曾令辉. 空气柱对水力旋流器分级流场的影响及调控研究[D]. 赣州: 江西理工大学, 2023. |
| ZENG Linghui. Study on the influence and regulation of air column on the graded flow field of hydrocyclone[D]. Ganzhou: Jiangxi University of Science and Technology, 2023. | |
| [32] | 邢雷, 赵立新, 蔡萌. 旋流分离及同井注采技术[M]. 北京: 化学工业出版社, 2024. |
| XING Lei, ZHAO Lixin, CAI Meng. Cyclone separation and single-well injection-production technology[M]. Beijing: Chemical Industry Press, 2024. | |
| [33] | 杨娜, 钟凯, 秦术杰. 基于分式析因设计的燕尾榫节点抗弯性能研究[J]. 建筑科学与工程学报, 2018, 35(5): 32-38. |
| YANG Na, ZHONG Kai, QIN Shujie. Research on flexural behavior of dovetail mortise-tenon joint based on fractional factorial design[J]. Journal of Architecture and Civil Engineering, 2018, 35(5): 32-38. | |
| [34] | 方萍, 何延. 试验设计与统计[M]. 杭州: 浙江大学出版社, 2003. |
| FANG Ping, HE Yan. Experimental design and statistic[M]. Hangzhou: Zhejiang University Press, 2003. | |
| [35] | SREEDHARAN Anupriya, Siew-Teng ONG. Combination of Plackett Burman and response surface methodology experimental design to optimize malachite green dye removal from aqueous environment[J]. Chemical Data Collections, 2020, 25: 100317. |
| [36] | 李云雁, 胡传荣. 试验设计与数据处理[M]. 北京: 化学工业出版社, 2005. |
| LI Yunyan, HU Chuanrong. Experiment design and data processing[M]. Beijing: Chemical Industry Press, 2005. | |
| [37] | 李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8): 41-45. |
| LI Li, ZHANG Sai, HE Qiang, et al. Application of response surface method in experimental design and optimization[J]. Experimental Research and Exploration, 2015, 34(8): 41-45. | |
| [38] | 郝拉娣, 于化东. 标准差与标准误[J]. 编辑学报, 2005, (2): 116-118. |
| HAO Ladi, YU Huadong. Standard deviation and standard error of arithmetic mean[J]. Acta Editologica, 2005, (2): 116-118. | |
| [39] | 魏松波, 刘琳, 郑兴升, 等. 新型螺旋式气液旋流分离器数值模拟研究[J]. 石油机械, 2024, 52(8): 132-140. |
| WEI Songbo, LIU Lin, ZHENG Xingsheng, et al. Numerical simulation and experimental verification of cylindrical-cone gas-liquid cyclone[J]. China Petroleum Machinery, 2024, 52(8): 132-140. | |
| [40] | 袁惠新, 方勇, 付双成, 等. 旋流器的微米级颗粒分级性能分析[J]. 化工进展, 2017, 36 (12): 4371-4377. |
| YUAN Huixin, FANG Yong, FU Shuangcheng, et al. Analysis of the classification performance of micron particles with hydrocyclones[J]. Chemical Industry and Engineering Progress, 2017, 36 (12): 4371-4377. | |
| [41] | 蒋明虎, 卢梦媚, 赵立新, 等. 分流比对内嵌小锥式固液旋流器性能的影响[J]. 化工机械, 2018, 45(2): 241-245, 250. |
| JIANG Minghu, LU Mengmei, ZHAO Lixin, et al. Influence of split ratio on the performance of solid-liquid cyclone with embedded cone structure[J]. Chemical Engineering & Machinery, 2018, 45(2): 241-245, 250. |
| [1] | 王瑞琪, 刘浩伟, 孙彦丽, 李荣花, 王政, 吴玉花, 吴建波, 张慧, 白红存. 面向高效储氢MOFs的设计构筑与性能调控研究现状分析及展望[J]. 化工进展, 2025, 44(S1): 323-339. |
| [2] | 龚程程, 章立标, 韩伟达. 超低温螺杆冷冻水机组干式蒸发器换热管制冷剂不均匀度分析及优化[J]. 化工进展, 2025, 44(S1): 38-50. |
| [3] | 张鸿武, 胡其会, 赵雪峰, 李玉星, 孟岚, 张利军, 朱建鲁, 王武昌. 陆上CO2管道泄漏风险研究进展[J]. 化工进展, 2025, 44(S1): 462-477. |
| [4] | 谷嘉进, 陈彩霞, 夏梓洪. 气液鼓泡塔内多气泡上升运动的直接数值模拟[J]. 化工进展, 2025, 44(S1): 51-57. |
| [5] | 崔瑞焯, 李双喜, 李方俊, 张天昊, 贾祥际. 碳化硅-石墨配副的干摩擦釜用机械密封摩擦磨损及温度形变场[J]. 化工进展, 2025, 44(S1): 58-73. |
| [6] | 马润梅, 黄乐乐, 李双喜, 戚志程, 闫欣欣, 赵鑫妮. 高温高压振动工况下喷管密封的密封性能分析及试验[J]. 化工进展, 2025, 44(S1): 8-18. |
| [7] | 徐海天, 徐艳英, 翟明. 施加流速边界条件的格子Boltzmann模型的沸腾传热模拟[J]. 化工进展, 2025, 44(S1): 84-91. |
| [8] | 刘哲, 周顺利, 李永祥, 张成喜, 刘宜鹏. 烷基萘合成催化剂研究进展[J]. 化工进展, 2025, 44(S1): 144-158. |
| [9] | 武锦怡, 赵睿恺, 邓帅, 张家麒, 高春霄, 刘葳桦, 赵力. 混合绝缘气体变温吸附分离回收SF6的数值模拟[J]. 化工进展, 2025, 44(S1): 19-28. |
| [10] | 段先哲, 毕文婷, 李南, 豆佳乐, 邵冰清, 汪佳伟, 吴鹏, 黄欢, 唐振平. 数值模拟在高放废物处置中的应用:放射性核素迁移机制及其影响因素[J]. 化工进展, 2025, 44(9): 5391-5405. |
| [11] | 张光辉, 江金旭, 黄磊, 陈士祥, 马天添. 市政污泥富氧燃烧特性影响因素分析及预测[J]. 化工进展, 2025, 44(9): 5460-5470. |
| [12] | 周敬皓, 张朝阳, 胡昊星, 王思茗, 刘静远, 魏光华. 基于格子玻尔兹曼方法的PEMFC微孔层气体传质分析[J]. 化工进展, 2025, 44(9): 4898-4907. |
| [13] | 王吉龙, 何磊, 苏毅, 唐昭帆. 基于尾气焚烧炉膛天然气无焰燃烧(MILD)数值模拟[J]. 化工进展, 2025, 44(9): 4928-4936. |
| [14] | 翟宇航, 丛立新, 韩冰, 王启林, 邹慧传. 大尺度氢气云爆燃压力波形成机制及灾害效应判定[J]. 化工进展, 2025, 44(8): 4709-4719. |
| [15] | 陈昇, 刘忠伟, 吕蓉蓉, 苗超, 周斯雅, 江晶晶, 陈锐, 黄刚华, 何萌, 朱丽云. 高含硫天然气脱硫净化装置酸气凝露冲蚀多场交互损伤模拟[J]. 化工进展, 2025, 44(8): 4754-4771. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |