化工进展 ›› 2025, Vol. 44 ›› Issue (11): 6602-6614.DOI: 10.16085/j.issn.1000-6613.2024-1519
• 资源与环境化工 • 上一篇
杜雄健(
), 张程, 余炎子(
), 张久政, 邓锐, 吴耀华
收稿日期:2024-09-18
修回日期:2024-11-17
出版日期:2025-11-25
发布日期:2025-12-08
通讯作者:
余炎子
作者简介:杜雄健(1994—),男,博士,工程师,研究方向为污染控制。E-mail: Du_xiongjian@163.com。
基金资助:
DU Xiongjian(
), ZHANG Cheng, YU Yanzi(
), ZHANG Jiuzheng, DENG Rui, WU Yaohua
Received:2024-09-18
Revised:2024-11-17
Online:2025-11-25
Published:2025-12-08
Contact:
YU Yanzi
摘要:
随着科技与经济的飞速发展,空气中的颗粒物和气体污染物对大气环境以及人类健康带来严重的威胁,因此利用空气过滤系统对空气进行净化从而改善空气质量至关重要。纤维素是世界上含量最丰富、可再生、可生物降解的高分子材料,并且由于还具有多孔性和表面可改性的特征,因此在过滤材料制备领域有广泛的应用前景。本文简述了纯纤维素、表面功能化纤维素以及纤维素复合材料等多种纤维素基空气滤纸的性能和制备方法,并对不同种类的纤维素基空气滤纸的应用场景进行了对比与分类。同时也对纤维素基空气滤纸的过滤机理进行了归纳与总结,并提出采用离子液体或者有机金属框架对纤维素基空气滤纸改性,可提高对特定有机挥发物的吸附能力,进一步在紫外光或者可见光的照射下氧化分解,达到真正意义上解决环境污染问题。
中图分类号:
杜雄健, 张程, 余炎子, 张久政, 邓锐, 吴耀华. 纤维素基空气滤纸的研究进展[J]. 化工进展, 2025, 44(11): 6602-6614.
DU Xiongjian, ZHANG Cheng, YU Yanzi, ZHANG Jiuzheng, DENG Rui, WU Yaohua. Progress in cellulose based air filter paper[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6602-6614.
| 原料 | 成型方法 | 过滤效率/% | 参考文献 |
|---|---|---|---|
| 纤维素纳米纤维 | 冷冻干燥 | 99.999(0.1~0.2μm) | [ |
| 纤维素纤维 | 冷冻干燥 | 99.78(0.3μm) | [ |
| 漂白硫酸盐针叶木浆 | 热干燥 | 99 | [ |
| 醋酸纤维素 | 静电纺丝 | 99.7 | [ |
| 蔗髓薄壁细胞纤维素 | 高速液相剪切 | 98(2.5~10μm) | [ |
| 棉纤维素 | 静电纺丝 | 98.749(0.5μm) | [ |
| 原纤化纤维素 | 冷冻干燥 | 99.78(0.3μm) | [ |
| 纤维素纳米纤维 | 冷冻干燥 | 99.6(0.3μm) | [ |
| 海鞘纳米纤维素 | 热干燥 | 99.983(0.3μm) | [ |
| 羧甲基纳米纤维素 | 真空抽滤 | 95 | [ |
| 漂白针叶木浆 | 冷冻干燥 | 95.02 | [ |
| 醋酸纤维素 | 静电纺丝 | 98.37 | [ |
| 漂白硫酸盐针叶木浆 | 冷冻干燥 | — | [ |
| 黄麻微晶纤维素 | 相转换法 | 85 | [ |
| 纳米纤维素 | 热干燥 | 86(0.005μm) | [ |
| 竹纤维素纳米纤维 | 真空抽滤 | — | [ |
| 麦秆纤维素纳米纤丝 | 真空抽滤 | 98.2 | [ |
表1 纯纤维素滤纸的制备方法及其过滤效率
| 原料 | 成型方法 | 过滤效率/% | 参考文献 |
|---|---|---|---|
| 纤维素纳米纤维 | 冷冻干燥 | 99.999(0.1~0.2μm) | [ |
| 纤维素纤维 | 冷冻干燥 | 99.78(0.3μm) | [ |
| 漂白硫酸盐针叶木浆 | 热干燥 | 99 | [ |
| 醋酸纤维素 | 静电纺丝 | 99.7 | [ |
| 蔗髓薄壁细胞纤维素 | 高速液相剪切 | 98(2.5~10μm) | [ |
| 棉纤维素 | 静电纺丝 | 98.749(0.5μm) | [ |
| 原纤化纤维素 | 冷冻干燥 | 99.78(0.3μm) | [ |
| 纤维素纳米纤维 | 冷冻干燥 | 99.6(0.3μm) | [ |
| 海鞘纳米纤维素 | 热干燥 | 99.983(0.3μm) | [ |
| 羧甲基纳米纤维素 | 真空抽滤 | 95 | [ |
| 漂白针叶木浆 | 冷冻干燥 | 95.02 | [ |
| 醋酸纤维素 | 静电纺丝 | 98.37 | [ |
| 漂白硫酸盐针叶木浆 | 冷冻干燥 | — | [ |
| 黄麻微晶纤维素 | 相转换法 | 85 | [ |
| 纳米纤维素 | 热干燥 | 86(0.005μm) | [ |
| 竹纤维素纳米纤维 | 真空抽滤 | — | [ |
| 麦秆纤维素纳米纤丝 | 真空抽滤 | 98.2 | [ |
| 原料 | 改性试剂 | 滤材改性方法 | 滤材制备方法 | 过滤效率/% | 参考文献 |
|---|---|---|---|---|---|
| 胡桃木纤维素 | 3-氨丙基-3-乙氧基硅烷 | 溶胶-凝胶法改性 | 旋切木材膜 | 97.8 | [ |
| 醋酸纤维素 | 聚酯 | 溶剂共混 | 共混静电纺丝 | 99.87 | [ |
| TEMPO氧化细菌纤维素 | 羟基磷灰石 | 原位浸渍 | 真空抽滤 | >99 | [ |
| 醋酸纤维素 | 聚丙烯腈 | 共混静电纺丝 | 共混静电纺丝 | 99.59 | [ |
| 纳米纤维素 | 淀粉-二氧化硅 | 涂层浸渍法 | 涂层浸渍法 | 99.9 | [ |
| 纤维素纳米晶体 | 聚丙烯腈-聚偏氟乙烯 | 共混静电纺丝 | 共混静电纺丝 | 98.2 | [ |
| 纤维素纳米晶体 | 聚醚砜 | 共混反应 | 非溶剂相转化法 | >99 | [ |
| 纤维素 | 硬脂酰氯 | 原位浸渍 | 传统湿法 | >99 | [ |
| 醋酸纤维素 | β-环糊精 | 接枝共聚 | 沉浸相转化 | 85.84 | [ |
| 醋酸纤维素 | 聚丙烯腈 | 溶胶凝胶相转化法 | 静电纺丝 | >99 | [ |
| 纤维素微/纳米纤维 | 聚偏氟乙烯 | 涂覆法 | 真空抽滤 | >99 | [ |
| TEMPO氧化纤维素 | 纳米二氧化硅 | 气相沉积法 | 抽滤干燥法 | — | [ |
| 纳米纤维素 | 甲基三甲氧基硅烷 | 接枝共聚 | 冷冻干燥 | 96.8 | [ |
| 纤维素纳米晶体 | 聚乳酸 | 熔融共混 | 平板热压 | 56 | [ |
| 纤维素 | 聚环氧乙烯-醋酸铜 | 原位合成 | 静电纺丝 | 98 | [ |
| 纤维素纳米线 | 乙烯基三甲氧基硅烷 | 共混 | 冷冻干燥 | 99.6 | [ |
| 纳米纤维素晶体 | 聚醚砜 | 表面涂覆 | 冷冻干燥 | 98 | [ |
| 纤维素纳米晶体 | 聚乙烯醇-葡甘露聚糖 | 共混静电纺丝 | 共混静电纺丝 | >99 | [ |
| 纳米纤维素 | 聚乙烯醇 | 共混 | 冷冻干燥 | 90.14 | [ |
| 纳米纤维素晶体 | 聚丙烯腈 | 共混静电纺丝 | 共混静电纺丝 | 98 | [ |
| 硝酸纤维素 | 聚乙烯醇-二氧化钛 | 表面涂覆 | 真空抽滤 | 98.9 | [ |
表2 改性纤维素滤纸的制备方法及其过滤效率
| 原料 | 改性试剂 | 滤材改性方法 | 滤材制备方法 | 过滤效率/% | 参考文献 |
|---|---|---|---|---|---|
| 胡桃木纤维素 | 3-氨丙基-3-乙氧基硅烷 | 溶胶-凝胶法改性 | 旋切木材膜 | 97.8 | [ |
| 醋酸纤维素 | 聚酯 | 溶剂共混 | 共混静电纺丝 | 99.87 | [ |
| TEMPO氧化细菌纤维素 | 羟基磷灰石 | 原位浸渍 | 真空抽滤 | >99 | [ |
| 醋酸纤维素 | 聚丙烯腈 | 共混静电纺丝 | 共混静电纺丝 | 99.59 | [ |
| 纳米纤维素 | 淀粉-二氧化硅 | 涂层浸渍法 | 涂层浸渍法 | 99.9 | [ |
| 纤维素纳米晶体 | 聚丙烯腈-聚偏氟乙烯 | 共混静电纺丝 | 共混静电纺丝 | 98.2 | [ |
| 纤维素纳米晶体 | 聚醚砜 | 共混反应 | 非溶剂相转化法 | >99 | [ |
| 纤维素 | 硬脂酰氯 | 原位浸渍 | 传统湿法 | >99 | [ |
| 醋酸纤维素 | β-环糊精 | 接枝共聚 | 沉浸相转化 | 85.84 | [ |
| 醋酸纤维素 | 聚丙烯腈 | 溶胶凝胶相转化法 | 静电纺丝 | >99 | [ |
| 纤维素微/纳米纤维 | 聚偏氟乙烯 | 涂覆法 | 真空抽滤 | >99 | [ |
| TEMPO氧化纤维素 | 纳米二氧化硅 | 气相沉积法 | 抽滤干燥法 | — | [ |
| 纳米纤维素 | 甲基三甲氧基硅烷 | 接枝共聚 | 冷冻干燥 | 96.8 | [ |
| 纤维素纳米晶体 | 聚乳酸 | 熔融共混 | 平板热压 | 56 | [ |
| 纤维素 | 聚环氧乙烯-醋酸铜 | 原位合成 | 静电纺丝 | 98 | [ |
| 纤维素纳米线 | 乙烯基三甲氧基硅烷 | 共混 | 冷冻干燥 | 99.6 | [ |
| 纳米纤维素晶体 | 聚醚砜 | 表面涂覆 | 冷冻干燥 | 98 | [ |
| 纤维素纳米晶体 | 聚乙烯醇-葡甘露聚糖 | 共混静电纺丝 | 共混静电纺丝 | >99 | [ |
| 纳米纤维素 | 聚乙烯醇 | 共混 | 冷冻干燥 | 90.14 | [ |
| 纳米纤维素晶体 | 聚丙烯腈 | 共混静电纺丝 | 共混静电纺丝 | 98 | [ |
| 硝酸纤维素 | 聚乙烯醇-二氧化钛 | 表面涂覆 | 真空抽滤 | 98.9 | [ |
| [1] | FENG Yuan, LIU Yuxi, DAI Hongxing, et al. Review and perspectives of enhancement in the catalytic stability for the complete combustion of CO, CH4, and volatile organic compounds[J]. Energy & Fuels, 2023, 37(5): 3590-3604. |
| [2] | MARTINS Nuno R, CARRILHO DA GRAÇA Guilherme. Health effects of PM2.5 emissions from woodstoves and fireplaces in living spaces[J]. Journal of Building Engineering, 2023, 79: 107848. |
| [3] | OSTRO Bart, FANG Yuanyuan, SOSPEDRA Marc Carreras, et al. Health impact assessment of PM2.5 from uncovered coal trains in the San Francisco Bay Area: Implications for global exposures[J]. Environmental Research, 2024, 252: 118787. |
| [4] | 杨家喜. 木棉纤维在空气过滤材料中的应用研究[D]. 广州: 华南理工大学, 2017. |
| YANG Jiaxi. Study on the application of kapok fiber in air filtration materials[D]. Guangzhou: South China University of Technology, 2017. | |
| [5] | 裴继诚. 植物纤维化学[M]. 4版. 北京: 中国轻工业出版社, 2012. |
| PEI Jicheng. Lignocellulosic chemistry[M]. 4th ed. Beijing: China Light Industry Press, 2012. | |
| [6] | RANA Ashvinder K, MOSTAFAVI Ebrahim, ALSANIE Walaa Fahad, et al. Cellulose-based materials for air purification: A review[J]. Industrial Crops and Products, 2023, 194: 116331. |
| [7] | NEMOTO Junji, SAITO Tsuguyuki, ISOGAI Akira. Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters[J]. ACS Applied Materials & Interfaces, 2015, 7(35): 19809-19815. |
| [8] | LU Zhaoqing, SU Zhiping, SONG Shunxi, et al. Toward high-performance fibrillated cellulose-based air filter via constructing spider-web-like structure with the aid of TBA during freeze-drying process[J]. Cellulose, 2018, 25(1): 619-629. |
| [9] | MA Shanshan, ZHANG Meiyun, YANG Bin, et al. Preparation of cellulosic air filters with controllable pore structures via organic solvent-based freeze casting: The key role of fiber dispersion and pore size[J]. BioResources, 2018, 13(3): 5894-5908. |
| [10] | 范婧雯. 针叶木浆的丝光化处理制备空气滤纸的研究[D]. 天津: 天津科技大学, 2020. |
| FAN Jingwen. Study on preparation of air filter paper by mercerizing softwood pulp[D]. Tianjin: Tianjin University of Science & Technology, 2020. | |
| [11] | 黄亚男. 纳米纤维素滤膜的构建及其分离性能的研究[D]. 武汉: 武汉大学, 2021. |
| HUANG Yanan. Construction of nanocellulose filter membranes and their separation performance[D]. Wuhan: Wuhan University, 2021. | |
| [12] | 王继真. 基于静电纺丝技术的纤维素基可降解空气过滤材料的制备及其在口罩中的应用研究[D]. 青岛: 青岛大学, 2021. |
| WANG Jizhen. Preparation of cellulose-based degradable air filter material based on electrospinning technology and its application in mask[D]. Qingdao: Qingdao University, 2021. | |
| [13] | 胡秋月. 高速液相剪切体系构建再生纤维素空气过滤材料及性能研究[D]. 昆明: 昆明理工大学, 2023. |
| HU Qiuyue. Study on the construction and properties of regenerated cellulose air filter material by high speed liquid shear system[D]. Kunming: Kunming University of Science and Technology, 2023. | |
| [14] | 程峰. 纤维素静电纺丝工艺优化与高效过滤试验研究[D]. 厦门: 厦门理工学院, 2021. |
| CHENG Feng. Experimental study on optimization of cellulose electrospinning process and high efficiency filtration[D]. Xiamen: Xiamen University of Technology, 2021. | |
| [15] | 苏治平. 纤维素基空气过滤材料的制备及其性能研究[D]. 西安: 陕西科技大学, 2017. |
| SU Zhiping. Preparation and properties of cellulose-based air filtration materials[D]. Xi’an: Shaanxi University of Science & Technology, 2017. | |
| [16] | 陈亚洋. 纤维素纳米线基空气过滤材料的可控制备及表征[D]. 上海: 东华大学, 2019. |
| CHEN Yayang. Controllable preparation and characterization of cellulose nanofibers based air filter materials[D]. Shanghai: Donghua University, 2019. | |
| [17] | 黄中原. 基于纳米纤维素高效空气过滤材料的构建及性能研究[D]. 广州: 华南理工大学, 2022. |
| HUANG Zhongyuan. Construction and performance study of high efficiency air filter material based on nano-cellulose[D]. Guangzhou: South China University of Technology, 2022. | |
| [18] | 李鸽. 纳米纤维素复合纳滤膜的制备与性能研究[D]. 杭州: 浙江大学, 2017. |
| LI Ge. Preparation and properties of nano-cellulose composite nanofiltration membrane[D]. Hangzhou: Zhejiang University, 2017. | |
| [19] | 刘璐. 纳米纤维素气凝胶的制备及其在卷烟滤嘴中的应用研究[D]. 广州: 华南理工大学, 2020. |
| LIU Lu. Preparation of nano-cellulose aerogel and its application in cigarette filters[D]. Guangzhou: South China University of Technology, 2020. | |
| [20] | 张凯. 静电纺纤维素树枝状纳米纤维的制备及其应用研究[D]. 天津: 天津工业大学, 2019. |
| ZHANG Kai. Preparation and application of electrospun cellulose dendritic nanofibers[D]. Tianjin: Tianjin Polytechnic University, 2019. | |
| [21] | 熊晓敏. 空气滤纸用纸浆纤维的超声波协同碱脲改性及机理研究[D]. 济南: 齐鲁工业大学, 2019. |
| XIONG Xiaomin. Study on modification of pulp fiber for air filter paper by ultrasonic wave and alkali urea and its mechanism[D]. Jinan: Qilu University of Technology, 2019. | |
| [22] | 李萌. 黄麻微晶纤维素的制备及其在纤维素复合膜中的应用研究[D]. 郑州: 郑州大学, 2022. |
| LI Meng. Study on preparation of jute microcrystalline cellulose and its application in cellulose composite membrane[D]. Zhengzhou: Zhengzhou University, 2022. | |
| [23] | 陈丽萍. 纳米纤维素多孔膜的构筑及其性能研究[D]. 杭州: 浙江大学, 2018. |
| CHEN Liping. Preparation of porous nanocellulose membrane and their properties[D]. Hangzhou: Zhejiang University, 2018. | |
| [24] | 王金龙. 木质纤维素纳米纤维材料制备及其湿强度的稳定机制研究[D]. 南宁: 广西大学, 2020. |
| WANG Jinlong. Preparation of lignocellulose nanofiber materials and study on the stability mechanism of its wet strength[D]. Nanning: Guangxi University, 2020. | |
| [25] | 杨明琰, 管舒仪, 陈欣玥, 等. 麦秆基纳米纤维素过滤膜的制备及对微纳米颗粒的过滤性能[J]. 化工新型材料, 2024, 52(4): 217-222. |
| YANG Mingyan, GUAN Shuyi, CHEN Xinyue, et al. Preparation of wheat straw-based nanocellulose filter membrane and its filtration properties for micro-nano particles[J]. New Chemical Materials, 2024, 52(4): 217-222. | |
| [26] | 龚雪梅, 蒋军, 王超, 等. 纳米纤维素疏水改性及其功能化应用研究进展[J]. 化工进展, 2024, 43(6): 3187-3198. |
| GONG Xuemei, JIANG Jun, WANG Chao, et al. Research progress on hydrophobicity modification and functional application of nanocellulose[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3187-3198. | |
| [27] | 凌新龙, 阳辰峰, 宁军霞. 纤维素的改性及应用研究进展[J]. 纺织科学与工程学报, 2020, 37(3): 60-85. |
| LING Xinlong, YANG Chenfeng, NING Junxia. Research progress in modification of cellulose and application[J]. Journal of Textile Science and Engineering, 2020, 37(3): 60-85. | |
| [28] | 杨伟胜, 焦亮, 愈智怀, 等. 纳米纤维素膜疏水化改性研究进展[J]. 纤维素科学与技术, 2017, 25(3): 60-68. |
| YANG Weisheng, JIAO Liang, YU Zhihuai, et al. Progress of hydrophobic nanocellulose films[J]. Journal of Cellulose Science and Technology, 2017, 25(3): 60-68. | |
| [29] | 徐东晓. 超疏水纤维素滤纸膜的制备及其油水分离性能[D]. 济南: 济南大学, 2021. |
| XU Dongxiao. Preparation of superhydrophobic cellulose filter paper membrane and its oil-water separation performance[D]. Jinan: University of Jinan, 2021. | |
| [30] | 姜郁. 基于聚乳酸和醋酸纤维素可降解超滤膜的制备及研究[D]. 长春: 长春工业大学, 2019. |
| JIANG Yu. Preparation and study of degradable ultrafiltration membrane based on polylactic acid and cellulose acetate[D]. Changchun: Changchun University of Technology, 2019. | |
| [31] | 邢通. 纤维素基油水分离膜制备及性能研究[D]. 北京: 华北电力大学, 2023. |
| XING Tong. Preparation and properties of cellulose-based oil-water separation membrane[D]. Beijing: North China Electric Power University, 2023. | |
| [32] | 吴婷. 超亲油、蓬松复合纳米纤维毡的制备及烹饪油烟过滤性能研究[D]. 郑州: 中原工学院, 2023. |
| WU Ting. Preparation of super-lipophilic and fluffy composite nanofiber felt and study on the filtration performance of cooking fume[D]. Zhengzhou: Zhongyuan University of Technology, 2023. | |
| [33] | 胡颖. 细菌纤维素基水净化材料的制备与性能研究[D]. 南京: 南京理工大学, 2022. |
| HU Ying. Preparation and properties of bacterial cellulose-based water purification materials[D]. Nanjing: Nanjing University of Science and Technology, 2022. | |
| [34] | 冯可. 超亲水抗污染AOPAN/RC复合膜的制备及其处理含油废水应用研究[D]. 南京: 南京大学, 2021. |
| FENG Ke. The preparation of super-hydrophilic and anti-pollution AOPAN/RC composite membrane and its application in treatment of oily wastewater[D]. Nanjing: Nanjing University, 2021. | |
| [35] | 王超群. 水下超疏油复合网膜的制备及其油水分离性能研究[D]. 上海: 上海大学, 2018. |
| WANG Chaoqun. The fabrication and properties of underwater superhydrophobic oil/water separation membrane[D]. Shanghai: Shanghai University, 2018. | |
| [36] | 王栋. 纤维素增强静电纺微滤膜的制备及油水乳液分离性能研究[D]. 哈尔滨: 东北林业大学, 2023. |
| WANG Dong. Preparation of cellulose reinforced electrospun microfiltration membrane and study on separation performance of oil-water emulsion[D]. Harbin: Northeast Forestry University, 2023. | |
| [37] | 郑双. 功能性纤维素纳米晶/聚醚砜复合超滤膜的制备及性能研究[D]. 杭州: 浙江理工大学, 2023. |
| ZHENG Shuang. The performance studies of polyethersulfone-based composite ultrafiltration membranes with functional cellulose nanocrystal[D]. Hangzhou: Zhejiang Sci-Tech University, 2023. | |
| [38] | 杨乾. 纸基疏水亲油材料构筑及在油水分离中应用[D]. 天津: 天津科技大学, 2022. |
| YANG Qian. Construction of paper-based hydrophobic and oleophilic materials and its application in oil-water separation[D]. Tianjin: Tianjin University of Science & Technology, 2022. | |
| [39] | 朱虹. 醋酸纤维素接枝β-环糊精及其分离膜的制备与表征[D]. 北京: 北京化工大学, 2011. |
| ZHU Hong. Preparation and characterization of cellulose acetate-graft-β-cyclodextrin membrane[D]. Beijing: Beijing University of Chemical Technology, 2011. | |
| [40] | 魏洁林. 基于聚丙烯腈(PAN)静电纺纳米纤维的醋酸纤维素(CA)复合超滤/纳滤膜的结构与性能研究[D]. 上海: 东华大学, 2010. |
| WEI Jielin. Study on the structure and properties of cellulose acetate (CA) composite ultrafiltration/nanofiltration membrane based on polyacrylonitrile (PAN) electrospun nanofibers[D]. Shanghai: Donghua University, 2010. | |
| [41] | 李疆懿. 再生木质纤维素复合膜的制备及其对含油废水的净化研究[D]. 舟山: 浙江海洋大学, 2023. |
| LI Jiangyi. Preparation of regenerated lignocellulose composite membrane and its purification of oily wastewater[D]. Zhoushan: Zhejiang Ocean University, 2023. | |
| [42] | 余成华. 纳米纤维素基超疏水材料的制备及其应用研究[D]. 广州: 华南理工大学, 2017. |
| YU Chenghua. Preparation and application of nanocellulose-based superhydrophobic materials[D]. Guangzhou: South China University of Technology, 2017. | |
| [43] | 张放. 功能化纳米纤维素气凝胶的成型机理及其应用基础研究[D]. 南京: 南京林业大学, 2017. |
| ZHANG Fang. Synthesis of functional cellulose nanofibril aerogels and their applications[D]. Nanjing: Nanjing Forestry University, 2017. | |
| [44] | 咸玉龙. 聚乳酸/纤维素纳米晶复合材料的制备及其熔喷材料性能的研究[D]. 杭州: 浙江理工大学, 2021. |
| XIAN Yulong. Preparation of polylactic acid/cellulose nanocrystalline composite and study on properties of its melt-blown material[D]. Hangzhou: Zhejiang Sci-Tech University, 2021. | |
| [45] | 卢万里. 电纺纳米纤维@MOFs基复合催化材料构筑及其水体修复性能研究[D]. 西安: 陕西科技大学, 2021. |
| LU Wanli. Study on the construction of electrospun nanofiber@MOFs-based composite catalytic materials and their water remediation performance[D]. Xi’an: Shaanxi University of Science & Technology, 2021. | |
| [46] | 武虹妤. 纳米纤维素晶体/聚醚砜复合超滤膜的抗污染性能及膜老化研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
| WU Hongyu. Study on anti-pollution performance and membrane aging of nano-cellulose crystal/polyethersulfone composite ultrafiltration membrane[D]. Harbin: Harbin Institute of Technology, 2019. | |
| [47] | 刘中车. 生物基纳米纤维膜的制备及水处理性能研究[D]. 南京: 南京林业大学, 2019. |
| LIU Zhongche. Preparation of bio-based nanofibrous membranes and its applications in the field of water treatment[D]. Nanjing: Nanjing Forestry University, 2019. | |
| [48] | 王泽鹏, 赵柯豫, 蔡雨欣, 等. 不同水性聚合物对纳米纤维素基气凝胶PM2.5过滤性能的影响[J]. 林业工程学报, 2023, 8(4): 87-94. |
| WANG Zepeng, ZHAO Keyu, CAI Yuxin, et al. Effect of different water-based polymers on PM2.5 filtration performance of nanocellulose based aerogel[J]. Journal of Forestry Engineering, 2023, 8(4): 87-94. | |
| [49] | 任素霞, 董莉莉, 张修强, 等. 高过滤性纳米纤维素/聚丙烯腈复合空气滤膜制备研究[J]. 河南科学, 2019, 37(3): 356-360. |
| REN Suxia, DONG Lili, ZHANG Xiuqiang, et al. The preparation and characterization of CNC/PAN highly efficient air filtration[J]. Henan Science, 2019, 37(3): 356-360. | |
| [50] | 洪逸斌, 李文祥, 王红梅, 等. 基于壳聚糖/聚乙烯醇/二氧化钛修饰的硝酸纤维素复合膜研究[J]. 应用化工, 2023, 52(2): 366-371. |
| HONG Yibin, LI Wenxiang, WANG Hongmei, et al. Study on nitrocellulose composite membrane modified by chitosan/polyvinyl alcohol/titanium dioxide[J]. Applied Chemical Industry, 2023, 52(2): 366-371. | |
| [51] | IKRAM Muhammad, RASHID Mahak, HAIDER Ali, et al. A review of photocatalytic characterization, and environmental cleaning, of metal oxide nanostructured materials[J]. Sustainable Materials and Technologies, 2021, 30: e00343. |
| [52] | DETTE Christian, PÉREZ-OSORIO Miguel A, KLEY Christopher S, et al. TiO2 anatase with a bandgap in the visible region[J]. Nano Letters, 2014, 14(11): 6533-6538. |
| [53] | KAMARULZAMAN Norlida, KASIM Muhd Firdaus, RUSDI Roshidah. Band gap narrowing and widening of ZnO nanostructures and doped materials[J]. Nanoscale Research Letters, 2015, 10(1): 346. |
| [54] | OLIVA A I, SOLÍS-CANTO O, CASTRO-RODRÍGUEZ R, et al. Formation of the band gap energy on CdS thin films growth by two different techniqusing bead-shaped titania grown on carbon fiber[J]. Asian Journal of Chemistry, 2014, 26(6): 1599-1603. |
| [55] | WIDIYANDARI Hendri, FIRDAUS Iqbal, KADARISMAN Vincencius Gunawan Slamet, et al. Optical properties and photocatalytic activities of tungsten oxide (WO3) with platinum co-catalyst addition[C]// AIP Conference Proceedings. AIP Publishing LLC, 2016, 1712(1): 50027. |
| [56] | ZOU Xiaohang, ZHAO Siwei, ZHANG Jiguo, et al. Preparation of ternary ZnO/Ag/cellulose and its enhanced photocatalytic degradation property on phenol and benzene in VOCs[J]. Open Chemistry, 2019, 17(1): 779-787. |
| [57] | LEE Joon Yeob, Wan-Kuen JO. Photocatalysis of vaporous organic pollutants using bead- shaped titania grown on carbon fiber[J]. Asian Journal of Chemistry, 2014, 26(6): 1599-1603. |
| [58] | MAIMAITI Halidan, AWATI Abuduheiremu, YISILAMU Gunisakezi, et al. Synthesis and visible-light photocatalytic CO2/H2O reduction to methyl formate of TiO2 nanoparticles coated by aminated cellulose[J]. Applied Surface Science, 2019, 466: 535-544. |
| [59] | 杨柳. 基于二氧化钛纳米颗粒原位生长改性纳滤膜结构与分离性能的研究[D]. 济南: 山东建筑大学, 2023. |
| YANG Liu. Study on membrane structure and separation performance of modified nanofiltration membrane based on in-situ growth of titanium dioxide nanoparticles[D]. Jinan: Shandong Jianzhu University, 2023. | |
| [60] | FURUKAWA Hiroyasu, GO Yong Bok, Nakeun KO, et al. Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals[J]. Inorganic Chemistry, 2011, 50(18): 9147-9152. |
| [61] | NIE Jingyi, XIE Hongbin, ZHANG Meiyun, et al. Effective and facile fabrication of MOFs/cellulose composite paper for air hazards removal by virtue of in situ synthesis of MOFs/chitosan hydrogel[J]. Carbohydrate Polymers, 2020, 250: 116955. |
| [62] | MA Shanshan, ZHANG Meiyun, NIE Jingyi, et al. Multifunctional cellulose-based air filters with high loadings of metal-organic frameworks prepared by in situ growth method for gas adsorption and antibacterial applications[J]. Cellulose, 2018, 25(10): 5999-6010. |
| [63] | VALENCIA Luis, ABDELHAMID Hani Nasser. Nanocellulose leaf-like zeolitic imidazolate framework (ZIF-L) foams for selective capture of carbon dioxide[J]. Carbohydrate Polymers, 2019, 213: 338-345. |
| [64] | YANG Kai, DAI Yan, ZHENG Wenji, et al. ZIFs-modified GO plates for enhanced CO2 separation performance of ethyl cellulose based mixed matrix membranes[J]. Separation and Purification Technology, 2019, 214: 87-94. |
| [65] | GAMELAS J A F, EVTYUGINA M G, PORTUGAL I, et al. New polyoxometalate-functionalized cellulosic fibre/silica hybrids for environmental applications[J]. RSC Advances, 2012, 2(3): 831-839. |
| [66] | ELSHAARAWY Reda F M, MUSTAFA Fatma H A, SOFY Ahmed R, et al. A new synthetic antifouling coatings integrated novel aminothiazole-functionalized ionic liquids motifs with enhanced antibacterial performance[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102800. |
| [67] | NIKOLAEVA Daria, AZCUNE Itxaso, TANCZYK Marek, et al. The performance of affordable and stable cellulose-based poly-ionic membranes in CO2/N2 and CO2/CH4 gas separation[J]. Journal of Membrane Science, 2018, 564: 552-561. |
| [68] | ZHU Fenfen, YAN Fawei, WANG Yingying, et al. Inhibition of PM2.5 emission from the combustion of waste materials[J]. Energy & Fuels, 2018, 32(10): 10941-10950. |
| [69] | 郭雪雪. 醋酸纤维素基聚离子液体膜的制备及性能研究[D]. 天津: 天津工业大学, 2019. |
| GUO Xuexue. Preparation and properties of cellulose acetate-based polyionic liquid membrane[D]. Tianjin: Tianjin Polytechnic University, 2019. | |
| [70] | 高洋, 惠岚峰, 赵铭月, 等. 基于静电纺PAN/PMIA共混纳米纤维复合空气过滤纸的制备及性能研究[J]. 中国造纸, 2024, 43(4): 85-93. |
| GAO Yang, HUI Lanfeng, ZHAO Mingyue, et al. Preparation and properties of PAN/PMIA blended nanofiber composite air filter paper based on electrostatic spinning[J]. China Pulp & Paper, 2024, 43(4): 85-93. | |
| [71] | 何小龙, 康玉堂, 邹栋, 等. 静电纺丝纳米纤维膜呼吸防护口罩研究进展[J]. 化工进展, 2025, 44(3): 1496-1504. |
| HE Xiaolong, KANG Yutang, ZHOU Dong, et al. Electrospun nanofiber membrane masks for respiratory protection: A review[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1496-1504. | |
| [72] | 王雅欣, 黄继伟, 凌新龙. 静电纺丝技术的发展现状及应用[J]. 纺织科学与工程学报, 2024, 41(2): 88-89 |
| WANG Yaxin, HUANG Jiwei, LING Xinlong. Development status and application of electrospinning technology[J]. Journal of Textile Science & Engineering, 2024, 41(2): 88-89. | |
| [73] | 张乐乐, 李佳柠, 龙映雪, 等. 静电纺丝法聚酰亚胺纤维膜研究进展[J]. 产业用纺织品, 2024, 42(4): 20-26. |
| ZHANG Lele, LI Jianing, LONG Yingxue, et al. Research progress on polyimide nanofiber membranes with electrospinning[J]. Technical Textiles, 2024, 42(4): 20-26. | |
| [74] | ZHANG Qijun, LI Qian, YOUNG Timothy M, et al. A novel method for fabricating an electrospun poly(vinyl alcohol)/cellulose nanocrystals composite nanofibrous filter with low air resistance for high-efficiency filtration of particulate matter[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8706-8714. |
| [75] | 吕金玲. 纤维素纳米晶体复合膜的制备、表征及其性能研究[D]. 大连: 大连理工大学, 2018. |
| Jinling LYU. Preparation, characterization and properties of cellulose nanocrystalline composite films[D]. Dalian: Dalian University of Technology, 2018. | |
| [76] | 王发烨. 用于空气净化器空气滤纸的研究[D]. 天津: 天津科技大学, 2017. |
| WANG Faye. Study on air filter paper applied to air purifier[D]. Tianjin: Tianjin University of Science & Technology, 2017. | |
| [77] | 高雪. 静电纺高效低阻功能化PM2.5过滤膜的结构调控及性能研究[D]. 广州: 华南理工大学, 2020. |
| GAO Xue. Study on structural regulation and performance of electrospun high efficiency and low resistance functionalized PM2.5 filter membrane[D]. Guangzhou: South China University of Technology, 2020. | |
| [78] | 孙晚红. 碳纳米管在空气过滤纸中的应用研究[D]. 天津: 天津科技大学, 2021. |
| SUN Wanhong. Study on application of carbon nanotubes in air filter paper[D]. Tianjin: Tianjin University of Science & Technology, 2021. | |
| [79] | 朱勇, 李红娟, 肖辉. 碳纳米管复合空气滤纸抗菌性研究[J]. 云南化工, 2017, 44(4): 29-33. |
| ZHU Yong, LI Hongjuan, XIAO Hui. Study on antimicrobial activity of carbon nanotubes composite air filter paper[J]. Yunnan Chemical Technology, 2017, 44(4): 29-33. | |
| [80] | TAN Yifan, WANG Xiaoqiang, SONG Shen, et al. Preparation of nitrogen-doped cellulose-based porous carbon and its carbon dioxide adsorption properties[J]. ACS Omega, 2021, 6(38): 24814-24825. |
| [81] | ZHUO Hao, HU Yijie, TONG Xing, et al. Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture[J]. Industrial Crops and Products, 2016, 87: 229-235. |
| [82] | 蒋蓉. 碳化细菌纤维素及其复合材料的制备对油水分离性能的研究[D]. 常州: 常州大学, 2022. |
| JIANG Rong. Study on the preparation of carbonated bacterial cellulose and its composite materials in the oil-water separation performance[D]. Changzhou: Changzhou University, 2022. | |
| [83] | National I F O S. Dept. of Health and Human Services, Centers for Disease Contol and Prevention, National Institute for Occupational Safety and Health. Guidance for filtration and air-cleaning systems to protect building environments from airborne chemical, biological, or radiological attacks[Z]. 2003. |
| [1] | 马晓彪, 刘晗, 王伟欢, 苗培培, 季莹辉, 陈博阳, 彭晓伟, 许强, 靳凤英, 马明超, 王银斌, 郭春垒. 酸和磷复合改性对ZSM-5分子筛催化裂解性能的影响[J]. 化工进展, 2025, 44(S1): 197-204. |
| [2] | 杜亮亮, 邵杰, 汪超, 宋俊达, 程尧, 开元, 胡超. 沥青基钠离子电池负极材料研究进展[J]. 化工进展, 2025, 44(S1): 307-322. |
| [3] | 翟恒艳, 金宇凡, 黎水涵, 尹衍军, 王季平, 贾献峰. 轻质碳纤维/酚醛复合材料的制备与改性研究进展[J]. 化工进展, 2025, 44(S1): 368-387. |
| [4] | 周慕妍, 李凯, 谢征芸, 孙彦琳. 新型多糖基二元流变改性剂在香精油微胶囊悬浮中的应用与性能[J]. 化工进展, 2025, 44(9): 5265-5276. |
| [5] | 张巍, 梁垚城, 伍乔, 付业昊, 尹艳山, 成珊, 阮敏, 刘涛, 周昭仪, 张凯凯, 李丹聪. 基于金属离子改性的Cu-SSZ-13催化剂在NH3-SCR脱硝中的应用[J]. 化工进展, 2025, 44(7): 3879-3891. |
| [6] | 王锦涛, 张红珍, 梁博. 双疏滤纸的制备及碱性盐水中油污分离性能[J]. 化工进展, 2025, 44(7): 4006-4012. |
| [7] | 徐茹婷, 赵剑, 孙康, 卢辛成, 蒋剑春, 苏忠高, 刘军利, 陈子标, 苏子寒. 活性炭改性及其对模拟废润滑油的净化性能[J]. 化工进展, 2025, 44(7): 4022-4031. |
| [8] | 孙燕, 陈马超, 田娜, 谢晓阳, 李晓玲, 何皎洁, 赵晓红. 基于β-环糊精的TFC正渗透膜原位构筑及抗污染性能[J]. 化工进展, 2025, 44(6): 3671-3682. |
| [9] | 陈彦君, 戴杰, 单军强, 张思欣, 计磊, 朱晨杰, 应汉杰. 我国纤维素乙醇的研究进展和发展趋势[J]. 化工进展, 2025, 44(5): 2541-2562. |
| [10] | 许镇浩, 易子骁, 曾晨, 王宇辰, 严凯. 生物质基平台分子转化升级的研究进展[J]. 化工进展, 2025, 44(5): 2642-2654. |
| [11] | 倪新, 高教琪, 周雍进. 酵母细胞工厂用于木质纤维素生物转化研究进展[J]. 化工进展, 2025, 44(5): 2475-2488. |
| [12] | 张绎如, 韩东梅, 马伟芳. 铁基复合卤氧化铋磁性材料强化可见光催化处理难降解有机废水研究进展[J]. 化工进展, 2025, 44(4): 2258-2273. |
| [13] | 黄娇, 朱亚明, 岳佳兴, 王莹, 程俊霞, 赵雪飞. 球形活性炭的制备、改性及应用研究进展[J]. 化工进展, 2025, 44(4): 2081-2101. |
| [14] | 李家豪, 范海明, 魏志毅, 程思远. 纳米材料在低渗透油藏中的研究进展及展望[J]. 化工进展, 2025, 44(3): 1485-1495. |
| [15] | 张东旭, 么强, 黑树楠, 李卫东, 刘成, 李志军, 宋乐春, 韩照明. 废塑料改性沥青相容性及性能分析研究进展[J]. 化工进展, 2025, 44(3): 1651-1665. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |