化工进展 ›› 2025, Vol. 44 ›› Issue (10): 6042-6051.DOI: 10.16085/j.issn.1000-6613.2024-1377
• 资源与环境化工 • 上一篇
李昕可1(
), 段思宇1,2, 史晓凯3, 刘溪3, 白雪梅3, 郭彦霞1, 吴浩2, 马志斌1(
)
收稿日期:2024-08-21
修回日期:2024-09-22
出版日期:2025-10-25
发布日期:2025-11-10
通讯作者:
马志斌
作者简介:李昕可(1999—),女,硕士研究生,研究方向为工业固废材料化利用。E-mail:389815667@qq.com。
基金资助:
LI Xinke1(
), DUAN Siyu1,2, SHI Xiaokai3, LIU Xi3, BAI Xuemei3, GUO Yanxia1, WU Hao2, MA Zhibin1(
)
Received:2024-08-21
Revised:2024-09-22
Online:2025-10-25
Published:2025-11-10
Contact:
MA Zhibin
摘要:
赤泥在堆存和利用过程中重金属的释放可能会对环境造成污染。为了深入探究赤泥中重金属在不同环境中的释放特性,本文首先测定了赤泥中不同重金属的含量及其赋存形态,考察了浸提剂pH、浸出时间、固液比、原料粒径及浸出温度对赤泥重金属浸出特性的影响,并结合风险评价编码法(RAC)以及次生相和原生相比值法(RSP)评价了赤泥中不同赋存重金属对环境的污染特性。结果表明,赤泥中As、Cr、Cu、Mn、Ni、Pb含量较高,重金属元素的赋存形态主要为残渣态。浸提剂pH对重金属Pb、Cr、Ni、Cu和Mn等的浸出影响较大;随着固液比增大和反应时间延长,赤泥中重金属浸出量增大。减小赤泥粒径有利于Cr等重金属的浸出。一定程度上升高反应温度将促进赤泥中重金属的浸出,但当反应温度超过50℃时,反而会使重金属浸出量下降。环境污染性评价分析表明,赤泥中各重金属的生物有效性较小,不容易被生物体吸收,但是赤泥中重金属Cr和Cu在环境中的迁移转化风险较大,在赤泥堆存和利用过程中,要注意加强对Cr和Cu的固化。
中图分类号:
李昕可, 段思宇, 史晓凯, 刘溪, 白雪梅, 郭彦霞, 吴浩, 马志斌. 赤泥中重金属赋存形态及其在不同环境的释放特性[J]. 化工进展, 2025, 44(10): 6042-6051.
LI Xinke, DUAN Siyu, SHI Xiaokai, LIU Xi, BAI Xuemei, GUO Yanxia, WU Hao, MA Zhibin. Occurrence forms of heavy metals in red mud and release characteristics in different environments[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 6042-6051.
| 样品 | 质量分数/% |
|---|---|
| Al2O3 | 25.13 |
| SiO2 | 22.16 |
| CaO | 17.23 |
| Fe2O3 | 14.77 |
| Na2O | 13.03 |
| TiO2 | 4.73 |
| SO3 | 1.11 |
| MgO | 0.79 |
| K2O | 0.42 |
| P2O5 | 0.34 |
表1 赤泥主要化学组成
| 样品 | 质量分数/% |
|---|---|
| Al2O3 | 25.13 |
| SiO2 | 22.16 |
| CaO | 17.23 |
| Fe2O3 | 14.77 |
| Na2O | 13.03 |
| TiO2 | 4.73 |
| SO3 | 1.11 |
| MgO | 0.79 |
| K2O | 0.42 |
| P2O5 | 0.34 |
| 筛孔尺寸/mm | D50/μm |
|---|---|
| 4.75 | 1.28 |
| 2.36 | 0.61 |
| 1.18 | 0.35 |
| 0.85 | 0.24 |
| 0.60 | 0.16 |
| 0.15 | 0.04 |
表2 赤泥粒度分布结果
| 筛孔尺寸/mm | D50/μm |
|---|---|
| 4.75 | 1.28 |
| 2.36 | 0.61 |
| 1.18 | 0.35 |
| 0.85 | 0.24 |
| 0.60 | 0.16 |
| 0.15 | 0.04 |
| 影响因素 | pH | 浸出时间/h | 固液比/g·mL-1 | 中位粒径D50/μm | 浸出温度/℃ |
|---|---|---|---|---|---|
| 浸提剂pH | 1 | 18 | 1:10 | 0.04 | 20 |
| 3 | |||||
| 5 | |||||
| 7 | |||||
| 9 | |||||
| 11 | |||||
| 13 | |||||
| 浸出时间 | 3 | 2 | 1∶10 | 0.04 | 20 |
| 4 | |||||
| 8 | |||||
| 18 | |||||
| 24 | |||||
| 固液比 | 3 | 18 | 1∶10 | 0.04 | 20 |
| 1∶20 | |||||
| 1∶30 | |||||
| 1∶40 | |||||
| 1∶50 | |||||
| 粒径 | 3 | 18 | 1∶10 | 0.16 | 20 |
| 0.24 | |||||
| 0.35 | |||||
| 0.61 | |||||
| 1.28 | |||||
| 温度 | 3 | 18 | 1∶10 | 0.04 | 20 |
| 30 | |||||
| 40 | |||||
| 50 | |||||
| 60 |
表3 不同条件对重金属浸出量影响的实验方案设计
| 影响因素 | pH | 浸出时间/h | 固液比/g·mL-1 | 中位粒径D50/μm | 浸出温度/℃ |
|---|---|---|---|---|---|
| 浸提剂pH | 1 | 18 | 1:10 | 0.04 | 20 |
| 3 | |||||
| 5 | |||||
| 7 | |||||
| 9 | |||||
| 11 | |||||
| 13 | |||||
| 浸出时间 | 3 | 2 | 1∶10 | 0.04 | 20 |
| 4 | |||||
| 8 | |||||
| 18 | |||||
| 24 | |||||
| 固液比 | 3 | 18 | 1∶10 | 0.04 | 20 |
| 1∶20 | |||||
| 1∶30 | |||||
| 1∶40 | |||||
| 1∶50 | |||||
| 粒径 | 3 | 18 | 1∶10 | 0.16 | 20 |
| 0.24 | |||||
| 0.35 | |||||
| 0.61 | |||||
| 1.28 | |||||
| 温度 | 3 | 18 | 1∶10 | 0.04 | 20 |
| 30 | |||||
| 40 | |||||
| 50 | |||||
| 60 |
| RAC | 风险程度 |
|---|---|
| RAC<1% | 无风险 |
| 1%≤RAC<10% | 低风险 |
| 10%≤RAC<30% | 中等风险 |
| 30%≤RAC<50% | 高风险 |
| RAC≥50% | 极高风险 |
表4 风险评价编码法RAC评价标准
| RAC | 风险程度 |
|---|---|
| RAC<1% | 无风险 |
| 1%≤RAC<10% | 低风险 |
| 10%≤RAC<30% | 中等风险 |
| 30%≤RAC<50% | 高风险 |
| RAC≥50% | 极高风险 |
| RSP | 污染程度 |
|---|---|
| RSP<1 | 无污染 |
| 1≤RSP<2 | 轻度污染 |
| 2≤RSP<3 | 中度污染 |
| RSP≥3 | 重度污染 |
表5 次生相和原生相比值法(RSP)评价标准
| RSP | 污染程度 |
|---|---|
| RSP<1 | 无污染 |
| 1≤RSP<2 | 轻度污染 |
| 2≤RSP<3 | 中度污染 |
| RSP≥3 | 重度污染 |
| 重金属 | 含量/mg·kg-1 |
|---|---|
| As | 19.16 |
| Cd | 0.93 |
| Cr | 208.10 |
| Cu | 24.07 |
| Mn | 100.83 |
| Ni | 23.02 |
| Pb | 30.56 |
| Zn | 10.85 |
表6 赤泥中重金属含量
| 重金属 | 含量/mg·kg-1 |
|---|---|
| As | 19.16 |
| Cd | 0.93 |
| Cr | 208.10 |
| Cu | 24.07 |
| Mn | 100.83 |
| Ni | 23.02 |
| Pb | 30.56 |
| Zn | 10.85 |
| [1] | 夏帆, 崔诗才, 蒲锡鹏. 赤泥综合利用现状综述[J]. 中国资源综合利用, 2021, 39(4): 85-89, 105. |
| XIA Fan, CUI Shicai, PU Xipeng. Summary of the status quo of comprehensive utilization of red mud[J]. China Resources Comprehensive Utilization, 2021, 39(4): 85-89, 105. | |
| [2] | WANG Li, SUN Ning, TANG Honghu, et al. A review on comprehensive utilization of red mud and prospect analysis[J]. Minerals, 2019, 9(6): 362. |
| [3] | 郝勇, 信翔宇, 黄永波, 等. 工业固废赤泥在水泥制备中的应用研究进展[J]. 中国粉体技术, 2022, 28(2): 1-6. |
| HAO Yong, XIN Xiangyu, HUANG Yongbo, et al. Application of industrial solid waste red mud in cement preparation: A review[J]. China Powder Science and Technology, 2022, 28(2): 1-6. | |
| [4] | PAVANI K, JAIN Surabhi, Sarat K DAS. Reuse of red mud in construction of tailing dam[J]. IOP Conference Series: Earth and Environmental Science, 2022, 982(1): 012043. |
| [5] | ZHANG Tingan, WANG Yanxiu, LU Guozhi, et al. Comprehensive utilization of red mud: Current research status and a possible way forward for non-hazardous treatment[M]//Light metals 2018. Cham: Springer International Publishing, 2018: 135-141. |
| [6] | 刘继东, 任杰, 陈娟, 等. 酸雨淋溶条件下赤泥中重金属在土壤中的迁移特性及其潜在危害[J]. 农业环境科学学报, 2017, 36(1): 76-84. |
| LIU Jidong, REN Jie, CHEN Juan, et al. Migration characteristics and potential hazards of heavy metals from bauxite residue to soil under simulated acid rain[J]. Journal of Agro-Environment Science, 2017, 36(1): 76-84. | |
| [7] | KUTLE A, NAĐ K, OBHOĐAŠ J, et al. Assessment of environmental condition in the waste disposal site of an ex-alumina plant near Obrovac, Croatia[J]. X-Ray Spectrometry, 2004, 33(1): 39-45. |
| [8] | Kian Huat LIM, SHON Byung Hyun. Metal components (Fe, Al, and Ti) recovery from red mud by sulfuric acid leaching assisted with ultrasonic waves[J]. Int. J. Emerg. Technol. Adv. Eng., 2015, 5(2): 25-32. |
| [9] | 李洪达, 乐红志, 朱建平, 等. 赤泥烧结制品中的重金属溶出特性研究[J]. 硅酸盐通报, 2020, 39(9): 2932-2936, 2943. |
| LI Hongda, LE Hongzhi, ZHU Jianping, et al. Dissolution characteristics of heavy metals in red mud sintered products[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9): 2932-2936, 2943. | |
| [10] | 张塞. 赣南某稀土矿区水土环境评价研究[D]. 北京: 中国地质大学(北京), 2020. |
| ZHANG Sai. Study on water and soil environment evaluation of a rare earth mining area in southern Jiangxi[D]. Beijing: China University of Geosciences, 2020. | |
| [11] | 李东艳, 庞少鹏, 徐心远, 等. 煤矸石山周围农田土壤重金属形态分布及风险评价[J]. 河南理工大学学报(自然科学版), 2015, 34(5): 722-729. |
| LI Dongyan, PANG Shaopeng, XU Xinyuan, et al. Morphology distribution and risk assessment of heavy metals in agricultural soils around coal gangue heap[J]. Journal of Henan Polytechnic University (Natural Science), 2015, 34(5): 722-729. | |
| [12] | 唐莹, 武相林, 孙敏, 等. 北京市门头沟风化煤矸石中汞的赋存形态与溶出特征分析[J]. 环境化学, 2022, 41(3): 962-976. |
| TANG Ying, WU Xianglin, SUN Min, et al. Analysis on the occurrence and dissolution characteristics of mercury in weathered coal gangue in Mentougou, Beijing[J]. Environmental Chemistry, 2022, 41(3): 962-976. | |
| [13] | SPADARO Lorenzo, ARENA Francesco, DI CHIO Roberto, et al. Definitive assessment of the level of risk of exhausted catalysts: Characterization of Ni and V contaminates at the limit of detection[J]. Topics in Catalysis, 2019, 62(1): 266-272. |
| [14] | 秦延文, 张雷, 郑丙辉, 等. 太湖表层沉积物重金属赋存形态分析及污染特征[J]. 环境科学, 2012, 33(12): 4291-4299. |
| QIN Yanwen, ZHANG Lei, ZHENG Binghui, et al. Speciation and pollution characteristics of heavy metals in the sediment of Taihu Lake[J]. Environmental Science, 2012, 33(12): 4291-4299. | |
| [15] | DOS SANTOS Kelly Rodrigues, SANTOS SILVA Jefferson, GONÇALVES Jardel Pereira, et al. Stabilization/solidification of toxic elements in cement pastes containing a spent FCC catalyst[J]. Water, Air, & Soil Pollution, 2021, 232(2): 48. |
| [16] | PENG Bingxian, LI Xinrui, ZHAO Weihua, et al. Study on the release characteristics of chlorine in coal gangue under leaching conditions of different pH values[J]. Fuel, 2018, 217: 427-433. |
| [17] | MIZUTANI Satoshi, YOSHIDA Tsuneyuki, SAKAI Shin-ichi, et al. Release of metals from MSW I fly ash and availability in alkali condition[J]. Waste Management, 1996, 16(5/6): 537-544. |
| [18] | PANG Lang, WANG Dengquan, WANG Heng, et al. Occurrence and leaching behaviors of heavy-metal elements in metallurgical slags[J]. Construction and Building Materials, 2022, 330: 127268. |
| [19] | 黄建欢. 垃圾焚烧飞灰中重金属的浸出特性及其水泥固化研究[D]. 广州: 华南理工大学, 2013. |
| HUANG Jianhuan. Study on leaching characteristics of heavy metals in fly ash from MSW incineration and cement solidification[D]. Guangzhou: South China University of Technology, 2013. | |
| [20] | WU Qing, QIU Rongliang, Yuena LYU.Effects of simulated acid rain on cation release in soils of South China[J]. Journal of Environmental Sciences, 1998, 10(3): 54-60. |
| [21] | 王登权, 何伟, 王强, 等. 重金属在水泥基材料中的固化和浸出研究进展[J]. 硅酸盐学报, 2018, 46(5): 683-693. |
| WANG Dengquan, HE Wei, WANG Qiang, et al. Review on stabilization and leaching of heavy metals in cementitious materials[J]. Journal of the Chinese Ceramic Society, 2018, 46(5): 683-693. | |
| [22] | 邵幸瑞, 张先龙, 李子阳, 等. 废弃流化催化裂化催化剂中重金属的赋存形态、浸出特性及其健康风险评价[J]. 环境科学研究, 2024, 37(8): 1819-1828. |
| SHAO Xingrui, ZHANG Xianlong, LI Ziyang, et al. Speciation and leaching characteristics of heavy metals in spent fluid catalytic cracking catalyst and its health risk assessment[J]. Research of Environmental Sciences, 2024, 37(8): 1819-1828. | |
| [23] | EGEMEN Ege, YURTERI Coşkun. Regulatory leaching tests for fly ash: A case study[J]. Waste Management & Research, 1996, 14(1): 43-50. |
| [24] | SLOOT Henrik. European activities on harmonisation of leaching/extraction tests and standardisation in relation to the use of alternative materials in construction[J]. Icmat, 2001. |
| [25] | MOUSSACEB K, AIT-MOKHTAR A, MERABET D. Influence of leaching conditions on the release kinetics of lead, chromium and nickel from solidified/stabilized cementitious materials[J]. Environmental Technology, 2012, 33(24): 2681-2690. |
| [26] | KARIUS Volker, HAMER Kay. pH and grain-size variation in leaching tests with bricks made of harbour sediments compared to commercial bricks[J]. Science of the Total Environment, 2001, 278(1/2/3): 73-85. |
| [27] | LIU Jie, ZHAO Jihui, WANG Yiren, et al. Speciation distribution and leaching behavior of heavy metals in coal gasification fine ash: Influence of particle size, carbon content and mineral composition[J]. Science of the Total Environment, 2024, 947: 174498. |
| [28] | LUO Hongwei, CHENG Ying, HE Dongqin, et al. Review of leaching behavior of municipal solid waste incineration (MSWI) ash[J]. Science of the Total Environment, 2019, 668: 90-103. |
| [29] | ZHANG Y, CETIN B, LIKOS W J, et al. Impacts of pH on leaching potential of elements from MSW incineration fly ash[J]. Fuel, 2016, 184: 815-825. |
| [30] | 范程程, 王宝民, 王晓军. 生活垃圾焚烧飞灰理化特性与污染毒性研究[J]. 中国环境科学, 2023, 43(S1): 149-159. |
| FAN Chengcheng, WANG Baomin, WANG Xiaojun. Study on physical and chemical properties and pollution toxicity of fly ash from domestic waste incineration[J]. China Environmental Science, 2023, 43(S1): 149-159. | |
| [31] | 吴超君, 郝喆, 曹明杰, 等. 煤岩重金属浸出特性及其水环境健康风险评价[J]. 能源环境保护, 2021, 35(3): 31-38. |
| WU Chaojun, HAO Zhe, CAO Mingjie, et al. Leaching characteristics of heavy metals in coal rock and its water environmental health risk assessment[J]. Energy Environmental Protection, 2021, 35(3): 31-38. | |
| [32] | 李晓鑫, 王昕宇, 罗文香, 等. 成都市中心城区街尘中锑形态分布及生态风险评价[J]. 环境化学, 2023, 42(6): 1836-1843. |
| LI Xiaoxin, WANG Xinyu, LUO Wenxiang, et al. Distribution of antimony species in street dust in downtown Chengdu and its ecological risk assessment[J]. Environmental Chemistry, 2023, 42(6): 1836-1843. | |
| [33] | 张永康, 冯乃琦, 刘岩, 等. 江西某铅锌矿区土壤重金属形态分析及风险评价[J]. 矿产综合利用, 2023(3): 199-204, 210. |
| ZHANG Yongkang, FENG Naiqi, LIU Yan, et al. Speciation analysis and risk assessment of heavy metals in the soil of a lead-zinc mining area[J]. Multipurpose Utilization of Mineral Resources, 2023(3): 199-204, 210. | |
| [34] | 汪进, 韩智勇, 冯燕, 等. 成都市工业区绿地土壤重金属形态分布特征及生态风险评价[J]. 生态环境学报, 2021, 30(9): 1923-1932. |
| WANG Jin, HAN Zhiyong, FENG Yan, et al. Morphological distribution characteristics and ecological risk assessment of heavy metal in the green soil of industrial zone in Chengdu[J]. Ecology and Environmental Sciences, 2021, 30(9): 1923-1932. |
| [1] | 卢永琦, 肖嘉宁, 迭庆杞, 徐思琪, 黄瑞潇, 孔祥蕊, 杨玉飞. 堆存粉煤灰长期淋溶过程污染物释放特征与环境风险评估[J]. 化工进展, 2025, 44(9): 5479-5490. |
| [2] | 高嘉炜, 黄亚继, 王圣, 朱志成, 肖怡萱, 宋惠康, 刘俊, 祁帅杰, 张煜尧, 赵佳琪. 硅铝矿物组分对垃圾焚烧飞灰熔融特性与重金属固化的影响[J]. 化工进展, 2025, 44(3): 1716-1725. |
| [3] | 赵凯强, 刘浩, 戴振华, 孙振峰, 杨超, 马诚. 植物油制备高硫聚合物的研究进展[J]. 化工进展, 2025, 44(3): 1454-1465. |
| [4] | 赵佳琪, 黄亚继, 李志远, 朱志成, 祁帅杰, 高嘉炜, 刘俊, 张煜尧. 污泥同农林废弃物共热解重金属迁移转化特性[J]. 化工进展, 2025, 44(2): 1064-1075. |
| [5] | 江鹏, 刘树根, 田森林, 宁平. 污水厂污泥生物干化特性及水分去除机制[J]. 化工进展, 2025, 44(2): 1110-1119. |
| [6] | 何边燕, 王玉冰, 李珊珊, 延卫. 共价有机框架材料的合成策略及其在重金属离子吸附中的研究进展[J]. 化工进展, 2025, 44(10): 5956-5974. |
| [7] | 全翠, 高宁博, 张广涛, 索浩杰. 含油污泥热解残渣制备渗水砖的重金属和多环芳烃浸出特性[J]. 化工进展, 2024, 43(9): 5226-5233. |
| [8] | 孔祥蕊, 董玥岑, 张蒙雨, 王彪, 尹水娥, 陈冰, 陆家纬, 张媛, 冯乐乐, 王洪涛, 徐海云. 生活垃圾焚烧飞灰处理技术研究进展[J]. 化工进展, 2024, 43(7): 4102-4117. |
| [9] | 郑钰, 李靖杰, 张宇峰, 赵梦琦, 张娜, 周澳, 于伟, 谭厚章, 王学斌. 典型炉排炉和流化床垃圾焚烧飞灰及螯合产物的重金属浸出毒性[J]. 化工进展, 2024, 43(3): 1630-1636. |
| [10] | 巩志强, 刘雷, 王少华, 韩悦, 郭俊山, 商攀峰, 祝令凯, 郑威. 矿物质化合物对含油污泥焚烧过程中重金属迁移转化的影响[J]. 化工进展, 2024, 43(3): 1614-1620. |
| [11] | 田童, 黄亚继, 肖怡萱, 程好强, 潘虎, 周琪, 李增辉. 渗滤液浸沥下垃圾焚烧炉渣中的重金属行为[J]. 化工进展, 2024, 43(11): 6514-6523. |
| [12] | 马晶, 马玉龙, 朱莉, 乔松, 孙永刚, 吉文欣. 煤气化渣结构组成及其主要金属元素赋存形态[J]. 化工进展, 2024, 43(10): 5857-5866. |
| [13] | 单书月, 罗中秋, 周新涛, 尚波, 田鑫聪, 阎崔蓉. 钢渣构筑Fe-CSH吸附溶液中Pb(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)性能及机理[J]. 化工进展, 2024, 43(10): 5867-5880. |
| [14] | 赵黄诗雨, 周宽, 邓思维, 刘龙宇, 朱韦韦, 余江. 改性壳聚糖材料修复多金属污染土壤[J]. 化工进展, 2024, 43(10): 5881-5889. |
| [15] | 任鹏锟, 仲兆平, 杨宇轩, 张杉, 杜浩然, 李骞. 改性海泡石对污泥热解过程中重金属的控制[J]. 化工进展, 2024, 43(1): 541-550. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |