化工进展 ›› 2025, Vol. 44 ›› Issue (1): 1-16.DOI: 10.16085/j.issn.1000-6613.2024-0068
张瑜1,2(), 王彦玲1,2(
), 张传保1,2, 许宁1,2, 李迪1,2, 梁诗南1,2, 史文静1,2, 丁文慧1,2
收稿日期:
2024-01-10
修回日期:
2024-03-01
出版日期:
2025-01-15
发布日期:
2025-02-13
通讯作者:
王彦玲
作者简介:
张瑜(1998—),女,博士研究生,研究方向为化学驱技术。E-mail:1043675284@qq.com。
基金资助:
ZHANG Yu1,2(), WANG Yanling1,2(
), ZHANG Chuanbao1,2, XU Ning1,2, LI Di1,2, LIANG Shinan1,2, SHI Wenjing1,2, DING Wenhui1,2
Received:
2024-01-10
Revised:
2024-03-01
Online:
2025-01-15
Published:
2025-02-13
Contact:
WANG Yanling
摘要:
目前,我国大部分油藏已进入了开发中后期,需通过三次强化采油技术来提高原油的采收率。由于深层超深层油藏普遍存在高温高盐特征,单一驱油体系已难以适应当今油田开采的需要。基于此,本文综述了国内外各类耐温抗盐型驱油体系的研究进展及应用现状,包括表面活性剂驱、聚合物驱、泡沫驱以及纳米流体驱油等。通过阐述这几种驱油体系的结构与性能,剖析其作用机理与驱油效果,并结合矿场实际应用成效,对深层超深层油藏耐温抗盐驱油体系进行了详细总结,为未来的重点研究方向打下基础。结果表明:对于深层超深层油藏而言,开展耐温抗盐驱油体系研究,能够有效提高油藏开发后期采收率,保证剩余油的全面动用。未来对耐温抗盐驱油体系的研究方向应重点放在以下几个方面:一是能够更大程度地降低界面张力;二是降低成本,采用最低的成本最大程度地达到更好的生产效益;三是研究不同类型驱油剂之间的协同性能。
中图分类号:
张瑜, 王彦玲, 张传保, 许宁, 李迪, 梁诗南, 史文静, 丁文慧. 深层超深层油藏耐温抗盐驱油体系研究进展[J]. 化工进展, 2025, 44(1): 1-16.
ZHANG Yu, WANG Yanling, ZHANG Chuanbao, XU Ning, LI Di, LIANG Shinan, SHI Wenjing, DING Wenhui. Research progress of temperature and salt resistant oil displacement systems in deep and ultra-deep reservoirs[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 1-16.
阴-非离子表面活性剂驱油体系 | 基础流体 | 油的类型 | 耐最高温度/℃ | 耐最高矿化度/mg·L-1 | 参考文献 |
---|---|---|---|---|---|
脂肪胺聚氧乙烯醚磺酸盐ACS | 盐水 | 原油 | 110 | 1.15×105 | [ |
0.1g/100mL AES + 0.1g/100mL FOS2#体系 | 水 | 原油 | 110 | 1.1×105 | [ |
RTS配方体系 | 盐水 | 原油 | 126 | 1.8×105 | [ |
ZY-PCSO4(3)表面活性剂 | 水 | 原油 | 110 | 1.8×105 | [ |
PPS + AES复配体系 | 盐水 | 原油 | 140 | 3.0×105 | [ |
表1 阴-非离子表面活性剂驱油体系所耐最高温度及最高矿化度
阴-非离子表面活性剂驱油体系 | 基础流体 | 油的类型 | 耐最高温度/℃ | 耐最高矿化度/mg·L-1 | 参考文献 |
---|---|---|---|---|---|
脂肪胺聚氧乙烯醚磺酸盐ACS | 盐水 | 原油 | 110 | 1.15×105 | [ |
0.1g/100mL AES + 0.1g/100mL FOS2#体系 | 水 | 原油 | 110 | 1.1×105 | [ |
RTS配方体系 | 盐水 | 原油 | 126 | 1.8×105 | [ |
ZY-PCSO4(3)表面活性剂 | 水 | 原油 | 110 | 1.8×105 | [ |
PPS + AES复配体系 | 盐水 | 原油 | 140 | 3.0×105 | [ |
双子表面活性剂驱油体系 | 基础流体 | 油的类型 | 耐最高温度/℃ | 耐最高矿化度/mg·L-1 | 参考文献 |
---|---|---|---|---|---|
JDZC季铵盐双子表面活性剂 | 盐水 | 原油 | 120 | 0.69×105 | [ |
0.25g/100mL SZ-11+0.40g/100mL AEO-3复配体系 | 盐水 | 原油 | 140 | 1.5×105 | [ |
LSN-104双子表面活性剂 | 水 | 原油 | 120 | 0.3×105 | [ |
表2 双子表面活性剂驱油体系所耐最高温度及最高矿化度
双子表面活性剂驱油体系 | 基础流体 | 油的类型 | 耐最高温度/℃ | 耐最高矿化度/mg·L-1 | 参考文献 |
---|---|---|---|---|---|
JDZC季铵盐双子表面活性剂 | 盐水 | 原油 | 120 | 0.69×105 | [ |
0.25g/100mL SZ-11+0.40g/100mL AEO-3复配体系 | 盐水 | 原油 | 140 | 1.5×105 | [ |
LSN-104双子表面活性剂 | 水 | 原油 | 120 | 0.3×105 | [ |
氟碳表面活性剂驱油体系 | 基础流体 | 油的类型 | 耐最高温度/℃ | 耐最高矿化度/mg·L-1 | 参考文献 |
---|---|---|---|---|---|
全氟辛酸二乙醇酰胺(FCDA) | 水 | — | 120 | 0.2×105 | [ |
羧基甜菜碱型(FP)、磺基甜菜碱型(FS) | 水 | 原油 | 200 | 2.5×105 | [ |
磺酸盐型阴离子氟碳表面活性剂 | 水 | — | 200 | 2.5×105 | [ |
表3 氟碳表面活性剂驱油体系所耐最高温度及最高矿化度
氟碳表面活性剂驱油体系 | 基础流体 | 油的类型 | 耐最高温度/℃ | 耐最高矿化度/mg·L-1 | 参考文献 |
---|---|---|---|---|---|
全氟辛酸二乙醇酰胺(FCDA) | 水 | — | 120 | 0.2×105 | [ |
羧基甜菜碱型(FP)、磺基甜菜碱型(FS) | 水 | 原油 | 200 | 2.5×105 | [ |
磺酸盐型阴离子氟碳表面活性剂 | 水 | — | 200 | 2.5×105 | [ |
聚合物驱油体系 | 基础流体 | 油的类型 | 耐最高温度/℃ | 耐最高矿化度/mg·L-1 | 参考文献 |
---|---|---|---|---|---|
天然高分子BP | 盐水 | 原油 | 160 | 0.22×105 | [ |
疏水缔合聚合物HASPAM | 水 | — | 140 | 2.0×105 | [ |
新型聚合物驱油剂TTBS-2 | 盐水 | 模拟油 | 120 | 1.5×105 | [ |
两性离子聚合物PDMT-1 | 水 | 原油 | 120 | 1.5×105 | [ |
表4 聚合物驱油体系所耐最高温度及最高矿化度
聚合物驱油体系 | 基础流体 | 油的类型 | 耐最高温度/℃ | 耐最高矿化度/mg·L-1 | 参考文献 |
---|---|---|---|---|---|
天然高分子BP | 盐水 | 原油 | 160 | 0.22×105 | [ |
疏水缔合聚合物HASPAM | 水 | — | 140 | 2.0×105 | [ |
新型聚合物驱油剂TTBS-2 | 盐水 | 模拟油 | 120 | 1.5×105 | [ |
两性离子聚合物PDMT-1 | 水 | 原油 | 120 | 1.5×105 | [ |
泡沫驱油体系 | 基础流体 | 油的类型 | 耐最高温度/℃ | 耐最高矿化度/mg·L-1 | 参考文献 |
---|---|---|---|---|---|
DPG三相泡沫 | 盐水 | 原油 | 110 | 1.2×105 | [ |
冻胶泡沫 | 盐水 | 原油 | 110 | 0.15×105 | [ |
CO2泡沫剂N-NP-15c-H | 盐水 | — | 125 | 1.0×105 | [ |
ZY型泡沫剂 | 盐水 | 原油 | 120 | 2.5×105 | [ |
表5 泡沫驱油体系所耐最高温度及最高矿化度
泡沫驱油体系 | 基础流体 | 油的类型 | 耐最高温度/℃ | 耐最高矿化度/mg·L-1 | 参考文献 |
---|---|---|---|---|---|
DPG三相泡沫 | 盐水 | 原油 | 110 | 1.2×105 | [ |
冻胶泡沫 | 盐水 | 原油 | 110 | 0.15×105 | [ |
CO2泡沫剂N-NP-15c-H | 盐水 | — | 125 | 1.0×105 | [ |
ZY型泡沫剂 | 盐水 | 原油 | 120 | 2.5×105 | [ |
纳米流体驱油体系 | 基础流体 | 油的类型 | 耐最高温度/℃ | 耐最高矿化度/mg·L-1 | 参考文献 |
---|---|---|---|---|---|
氧化石墨烯JGO400+DTAB复合体系 | 盐水 | 原油 | 80 | 0.4×105 | [ |
NS配方 | 盐水 | 原油 | 100 | 0.56×105 | [ |
MoS2纳米流体 | 水 | 原油 | 120 | 2.5×105 | [ |
碳基纳米颗粒CDs | 盐水 | 原油 | 150 | 2.6×105 | [ |
表6 泡沫驱油体系所耐最高温度及最高矿化度
纳米流体驱油体系 | 基础流体 | 油的类型 | 耐最高温度/℃ | 耐最高矿化度/mg·L-1 | 参考文献 |
---|---|---|---|---|---|
氧化石墨烯JGO400+DTAB复合体系 | 盐水 | 原油 | 80 | 0.4×105 | [ |
NS配方 | 盐水 | 原油 | 100 | 0.56×105 | [ |
MoS2纳米流体 | 水 | 原油 | 120 | 2.5×105 | [ |
碳基纳米颗粒CDs | 盐水 | 原油 | 150 | 2.6×105 | [ |
1 | 李梅霞. 国内外三次采油现状及发展趋势[J]. 当代石油石化, 2008, 16(12): 19-25. |
LI Meixia. The status of tertiary oil recovery both home and abroad as well as its development trends[J]. Petroleum & Petrochemical Today, 2008, 16(12): 19-25. | |
2 | 王秋玉, 刘超威, 闫文琦, 等. 准噶尔盆地东部凹陷区二叠系上乌尔禾组深层-超深层储层特征及发育模式[J]. 天然气地球科学, 2024, 35(2): 259-274. |
WANG Qiuyu, LIU Chaowei, YAN Wenqi, et al. Characteristics and development model of deep-ultra deep reservoirs in the Upper Wuerhe Formation of Permian in the sags of eastern Junggar Basin[J]. Natural Gas Geoscience, 2024, 35(2): 259-274. | |
3 | ZHU Guangyou, LI Jingfei, ZHANG Zhiyao, et al. Stability and cracking threshold depth of crude oil in 8000m ultra-deep reservoir in the Tarim Basin[J]. Fuel, 2020, 282: 118777. |
4 | 郭旭升. 以关键核心技术突破带动我国深层、超深层油气勘探开发突破[J]. 能源, 2022(9): 46-50. |
GUO Xusheng. Drive the breakthrough of deep and ultra-deep oil and gas exploration and development in China with the breakthrough of key core technologies[J]. Energy, 2022(9): 46-50. | |
5 | 孙龙德, 邹才能, 朱如凯, 等. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发, 2013, 40(6): 641-649. |
SUN Longde, ZOU Caineng, ZHU Rukai, et al. Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development, 2013, 40(6): 641-649. | |
6 | 崔晓珊. 垦西油田罗322超深层稠油油藏开发方式优化研究[D]. 青岛: 中国石油大学(华东), 2017. |
CUI Xiaoshan. Optimization study on exploitation of ultra-deep heavy oil reservoirs in Luo322 of Kenxi Oilfield[D]. Qingdao: China University of Petroleum (East China), 2017. | |
7 | 李锐轩. 耐高温聚合物包覆纳米材料的合成及驱油性能研究[D]. 西安: 西安石油大学, 2022. |
LI Ruixuan. High temperature resistant polymer coated nanometer material synthesis and oil displacement performance research[D]. Xi’an: Xi’an Shiyou University, 2022. | |
8 | 李东霞, 苏玉亮, 李蕾, 等. 高温高压深层油藏流体驱替微观可视化模拟实验系统设计[J]. 实验技术与管理, 2021, 38(10): 48-54. |
LI Dongxia, SU Yuliang, LI Lei, et al. Design of microscopic visualization simulation experiment system for fluid displacement in high temperature and high pressure deep reservoirs[J]. Experimental Technology and Management, 2021, 38(10): 48-54. | |
9 | 韩宗良, 陈普信, 张连明, 等. 深层油藏开发经济评价[J]. 油气田地面工程, 2004, 23(7): 9-13. |
HAN Zongliang, CHEN Puxin, ZHANG Lianming, et al. Economic evaluation of deep reservoir development[J]. Oil-gasfield Surface Engineering, 2004, 23(7): 9-13. | |
10 | PANG Yanming, DU Qinglong, JIANG Xueyan, et al. Research and practice of Daqing oilfield on fine and efficient water flooding development at the ultrahigh water cut stage[C]// International Petroleum Technology Conference. European Association of Geoscientists & Engineers, 2013. |
11 | WEN Hua, SUN Na, LIU Yikun. Index system evaluating water flooding development effect of oilfield at ultra-high water cut stage[J]. Journal of Petroleum Exploration and Production Technology, 2017, 7(1): 111-123. |
12 | 韩方. 低渗油藏表面活性剂驱提高采收率技术研究[D]. 北京: 中国科学院大学(中国科学院渗流流体力学研究所), 2021. |
HAN Fang. Enhanced oil recovery by surfactant flooding in low permeability reservoir[D]. Beijing: University of Chinese Academy of Sciences (Institute of Porous Flow and Fluid Mechanics), 2021. | |
13 | 白佳佳, 顾添帅, 司双虎, 等. 高盐稠油油藏聚合物驱提高采收率研究[J]. 常州大学学报(自然科学版), 2023, 35(5): 60-66. |
BAI Jiajia, GU Tianshuai, SI Shuanghu, et al. Investigation on enhanced oil recovery by polymer flooding in high-salinity heavy oil reservoirs[J]. Journal of Changzhou University (Natural Science Edition), 2023, 35(5): 60-66. | |
14 | 冯喆. 基于POSS耐温抗盐新型驱油材料的设计合成与基础研究[D]. 天津: 天津工业大学, 2020. |
FENG Zhe. Design, synthesis and basic research of a new oil displacement material with temperature resistance and salt resistance based on POSS[D]. Tianjin: Tiangong University, 2020. | |
15 | 邹辰炜. 高温高盐油藏非均相调驱体系构筑及地层适应性机理研究[D]. 青岛: 中国石油大学(华东), 2019. |
ZOU Chenwei. Study on construction and adaptability of heterogeneous combination flooding system for high temperature and high salinity reservoir[D]. Qingdao: China University of Petroleum (East China), 2019. | |
16 | 杨中建, 贾锁刚, 张立会, 等. 异常高温、高盐油藏深部调驱波及控制技术[J]. 石油勘探与开发, 2016, 43(1): 91-98. |
YANG Zhongjian, JIA Suogang, ZHANG Lihui, et al. Deep profile adjustment and oil displacement sweep control technique for abnormally high temperature and high salinity reservoirs[J]. Petroleum Exploration and Development, 2016, 43(1): 91-98. | |
17 | 苑光宇, 侯吉瑞, 罗焕, 等. 耐温抗盐调堵剂研究与应用进展[J]. 油田化学, 2012, 29(2): 251-256. |
YUAN Guangyu, HOU Jirui, LUO Huan, et al. Research and application progress of high temperature resistant and high salinity tolerant plugging agents[J]. Oilfield Chemistry, 2012, 29(2): 251-256. | |
18 | LIU Yang, ZHANG Jian, WU Xingcai, et al. Experimental investigation on a novel particle polymer for enhanced oil recovery in high temperature and high salinity reservoirs[J]. Journal of Chemistry, 2021, 2021(2): 1-8. |
19 | 魏秋月. 三次采油用表面活性剂的研究现状与趋势[J]. 化学工程与装备, 2018(10): 105-106. |
WEI Qiuyue. Research status and trend of surfactants for tertiary oil recovery[J]. Chemical Engineering & Equipment, 2018(10): 105-106. | |
20 | 安丽媛, 郭立伟, 石昀, 等. 复合表面活性剂驱油体系的合成及应用[J]. 当代化工, 2022, 51(11): 2614-2617. |
AN Liyuan, GUO Liwei, SHI Yun, et al. Synthesis and application of compound surfactant oil displacement system[J]. Contemporary Chemical Industry, 2022, 51(11): 2614-2617. | |
21 | 杨剑, 白玉军, 李东旭, 等. 高效驱油表面活性剂的制备与应用研究[J]. 现代化工, 2018, 38(5): 90-94. |
YANG Jian, BAI Yujun, LI Dongxu, et al. Preparation and application of high efficiency oil displacement surfactant[J]. Modern Chemical Industry, 2018, 38(5): 90-94. | |
22 | SHAFIEE NAJAFI Seyyed Amin, KAMRANFAR Peyman, MADANI Mohammad, et al. Experimental and theoretical investigation of CTAB microemulsion viscosity in the chemical enhanced oil recovery process[J]. Journal of Molecular Liquids, 2017, 232: 382-389. |
23 | 王洪光, 任红梅, 杨延辉, 等. 渣油磺酸盐表面活性剂对晋45断块高温油田的适应性评价[J]. 石油钻采工艺, 2008, 30(1): 103-105. |
WANG Hongguang, REN Hongmei, YANG Yanhui, et al. Evaluation on adaptability of residue sulfonate surface active agent to high temperature of fault block Jin-45[J]. Oil Drilling & Production Technology, 2008, 30(1): 103-105. | |
24 | 孙铭勤, 张贵才, 葛际江, 等. 高温酸化助排剂HC2-1的研究[J]. 油气地质与采收率, 2006, 13(2): 93-96. |
SUN Mingqin, ZHANG Guicai, GE Jijiang, et al. Research on high temperature acidizing cleanup additive HC2-1[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(2): 93-96. | |
25 | 郑皓轩, 师永民, 田雨, 等. 一种耐温抗盐型表面活性剂的制备及其驱油性能评价[J]. 应用化工, 2022, 51(7): 1929-1933. |
ZHENG Haoxuan, SHI Yongmin, TIAN Yu, et al. Preparation of a temperature-resistant and salt-resistant surfactant and evaluation of its oil repellent performance[J]. Applied Chemical Industry, 2022, 51(7): 1929-1933. | |
26 | 余鹏鸣, 张威, 王丰收, 等. 阳离子Gemini表面活性剂研究进展[J]. 印染助剂, 2015, 32(9): 6-12. |
YU Pengming, ZHANG Wei, WANG Fengshou, et al. Advances of cationic Gemini surfactants[J]. Textile Auxiliaries, 2015, 32(9): 6-12. | |
27 | 余庆, 张辉, 吴一慧, 等. 碱对阴-非离子表面活性剂的界面活性影响研究[J]. 当代化工, 2018, 47(8): 1613-1616. |
YU Qing, ZHANG Hui, WU Yihui, et al. Study on the effect of alkali on the interfacial activity of anionic and nonionic surfactants[J]. Contemporary Chemical Industry, 2018, 47(8): 1613-1616. | |
28 | 王健, 吴一慧, 金庭浩, 等. 高盐油藏下Gemini/阴-非离子表面活性剂协同效应研究[J]. 能源化工, 2017, 38(6): 63-66. |
WANG Jian, WU Yihui, JIN Tinghao, et al. Study on synergetic effect between Gemini and anionic-nonionic surfactants in high salinity oil reservoir[J]. Energy Chemical Industry, 2017, 38(6): 63-66. | |
29 | 陈锡荣, 黄凤兴. 驱油用耐温抗盐表面活性剂的研究进展[J]. 石油化工, 2010, 39(12): 1307-1312. |
CHEN Xirong, HUANG Fengxing. Research progress of temperature-resistant and salt-tolerant surfactants for enhanced oil recovery[J]. Petrochemical Technology, 2010, 39(12): 1307-1312. | |
30 | 陈斌, 曹小华, 周亮, 等. 适用于高温高盐低渗砂岩油藏的表面活性剂驱油体系[J]. 钻采工艺, 2021, 44(3): 87-91. |
CHEN Bin, CAO Xiaohua, ZHOU Liang, et al. Surfactant flooding system for high temperature and high salinity of low permeability sandstone reservoirs[J]. Drilling & Production Technology, 2021, 44(3): 87-91. | |
31 | LEVITT David B, JACKSON Adam C, HEINSON Christopher, et al. Identification and evaluation of high-performance EOR surfactants[J]. SPE Reservoir Evaluation & Engineering, 2009, 12(2): 243-253. |
32 | 吴雅丽, 张震. 阴-非离子表面活性剂的合成及界面张力研究[J]. 广州化工, 2011, 39(10): 91-93. |
WU Yali, ZHANG Zhen. New anionic-nonionic surfactant synthesis and dynamic interfacial tension[J]. Guangzhou Chemical Industry, 2011, 39(10): 91-93. | |
33 | 杨文新, 沙鸥, 何建华, 等. 耐温抗盐阴-非离子表面活性剂研究及应用[J]. 油田化学, 2013, 30(3): 416-419. |
YANG Wenxin, SHA Ou, HE Jianhua, et al. Application of temperature resistant and salt tolerant anionic-nonionic surfactants[J]. Oilfield Chemistry, 2013, 30(3): 416-419. | |
34 | 唐红娇, 侯吉瑞, 赵凤兰, 等. 油田用非离子型及阴-非离子型表面活性剂的应用进展[J]. 油田化学, 2011, 28(1): 115-118. |
TANG Hongjiao, HOU Jirui, ZHAO Fenglan, et al. Application progress of nonionic and anionic-nonionic surfactants used in oil field[J]. Oilfield Chemistry, 2011, 28(1): 115-118. | |
35 | 王锋. 抗温抗盐型表面活性剂驱油体系研究进展[J]. 中国化工贸易, 2015(10): 307. |
WANG Feng. Research progress of oil displacement system with temperature-resistant and salt-resistant surfactants[J]. China Chemical Trade, 2015(10): 307. | |
36 | MILLER D J, VON HALASZ S-P, SCHMIDT M, et al. Dual surfactant systems for enhanced oil recovery at high salinities[J]. Journal of Petroleum Science and Engineering, 1991, 6(1): 63-72. |
37 | 杨晓鹏, 郭东红, 辛浩川, 等. 脂肪醇聚氧乙烯醚磺酸盐NNA系列高温高盐条件下界面活性研究[J]. 油田化学, 2009, 26(4): 422-424. |
YANG Xiaopeng, GUO Donghong, XIN Haochuan, et al. The interfacial activity of dodecyl polyoxyethylene sulfonates in high temperature and high salinity media[J]. Oilfield Chemistry, 2009, 26(4): 422-424. | |
38 | 赵健慧. 耐温抗盐表面活性剂的合成、性能评价及驱油体系的构筑[D]. 青岛: 中国石油大学(华东), 2015. |
ZHAO Jianhui. Synthesis, performance evaluation of temperature-resistant and salinity-tolerant surfactant and its construction of oil flooding system[D]. Qingdao: China University of Petroleum (East China), 2015. | |
39 | 周明, 冯积累, 江同文, 等. 塔里木油田高温高矿化度油藏三次采油初步研究[J]. 新疆石油地质, 2010, 31(2): 163-166. |
ZHOU Ming, FENG Jilei, JIANG Tongwen, et al. Primary study on EOR for high temperature and salinity reservoirs in Tarim Basin[J]. Xinjiang Petroleum Geology, 2010, 31(2): 163-166. | |
40 | 郭东红, 崔晓东, 杨晓鹏, 等. 高效、低成本耐温抗盐驱油表面活性剂的研制与应用[J]. 精细与专用化学品, 2021, 29(3): 4-7. |
GUO Donghong, CUI Xiaodong, YANG Xiaopeng, et al. Development and application of high efficiency, low cost temperature-resistant and salt-resistant oil displacement surfactant[J]. Fine and Specialty Chemicals, 2021, 29(3): 4-7. | |
41 | 王斌, 董俊艳, 王敏, 等. 阴非离子表面活性剂在高温高盐油藏的研究与应用[J]. 化学工程与装备, 2018(11): 144-145. |
WANG Bin, DONG Junyan, WANG Min, et al. Research and application of anionic and non-ionic surfactants in high-temperature and high-salinity oil reservoirs [J]. Chemical Engineering & Equipment, 2018(11): 144-145. | |
42 | 张瑶, 付美龙, 侯宝峰, 等. 耐温抗盐型嵌段聚醚类阴-非两性离子表面活性剂的制备与性能评价[J]. 油田化学, 2018, 35(3): 485-491. |
ZHANG Yao, FU Meilong, HOU Baofeng, et al. Preparation and performance evaluation of polyether anionic-nonionic surfactant with temperature resistance and salt tolerance[J]. Oilfield Chemistry, 2018, 35(3): 485-491. | |
43 | WU Yongfu, SHULER Patrick, BLANCO Mario, et al. A study of branched alcohol propoxylate sulfate surfactants for improved oil recovery[C]// Proceedings of SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2005. |
44 | 胡冬慧, 陈佳明, 艾林, 等. 阴-非离子型表面活性剂的研究进展[J]. 科技创新与应用, 2017(26): 23. |
HU Donghui, CHEN Jiaming, AI Lin, et al. Research progress of anionic-nonionic surfactants[J]. Technology Innovation and Application, 2017(26): 23. | |
45 | 赵剑曦. 杂双子表面活性剂的研究进展[J]. 化学进展, 2005, 17(6): 987-993. |
ZHAO Jianxi. Advances in heteroGemini surfactants[J]. Progress in Chemistry, 2005, 17(6): 987-993. | |
46 | 杨建军. 阳离子双子表面活性剂在三次采油领域的应用基础研究[D]. 成都: 西南石油学院, 2005. |
YANG Jianjun. Basic research on the application of cationic Gemini surfactants in tertiary oil recovery[D]. Chengdu: Southwest Petroleum University, 2005. | |
47 | 王俊, 杨培法, 李杰, 等. 阳离子型双子表面活性剂的合成及表面活性[J]. 应用化工, 2005, 34(11): 692-694. |
WANG Jun, YANG Peifa, LI Jie, et al. Synthesis and surface activity of cationic Gemini surfactants[J]. Applied Chemical Industry, 2005, 34(11): 692-694. | |
48 | 蒲春生, 白云, 陈刚. 双子表面活性剂的研究及应用进展[J]. 应用化工, 2019, 48(9): 2203-2207. |
PU Chunsheng, BAI Yun, CHEN Gang. Progresses in research and application of Gemini surfactant[J]. Applied Chemical Industry, 2019, 48(9): 2203-2207. | |
49 | 赵永, 丁国华, 刘峥. 双子表面活性剂的合成与应用研究进展[J]. 精细石油化工, 2015, 32(2): 75-80. |
ZHAO Yong, DING Guohua, LIU Zheng. Synthesis and application of Gemini surfactant[J]. Speciality Petrochemicals, 2015, 32(2): 75-80. | |
50 | 张鑫宇, 周越, 樊晔, 等. 双子表面活性剂构效关系的研究新进展[J]. 中国洗涤用品工业, 2019(12): 54-61. |
ZHANG Xinyu, ZHOU Yue, FAN Ye, et al. The progress of structure-activity relationship of Gemini surfactants[J]. China Cleaning Industry, 2019(12): 54-61. | |
51 | 冯玉军, 孙玉海, 陈志, 等. 双子表面活性剂结构对性能的影响[J]. 日用化学工业, 2007, 37(2): 107-111. |
FENG Yujun, SUN Yuhai, CHEN Zhi, et al. Effects of molecular structure on properties of Gemini surfactants[J]. China Surfactant Detergent & Cosmetics, 2007, 37(2): 107-111. | |
52 | 吴浩, 孙怡韫, 王健, 等. 磺酸盐双子表面活性剂类超低界面张力泡沫体系研究[J]. 精细石油化工进展, 2017, 18(4): 1-4 |
WU Hao, SUN Yiyun, WANG Jian, et al. Research on sulfonate Gemini surfactant ultralow interfacial tension foam systems[J]. Advances in Fine Petrochemicals, 2017, 18(4): 1-4. | |
53 | 沈之芹, 李应成, 沙鸥, 等. 高活性阴离子-非离子双子表面活性剂合成及性能[J]. 精细石油化工进展, 2011, 12(9): 25-29. |
SHEN Zhiqin, LI Yingcheng, SHA Ou, et al. Synthesis and properties of nonionic-anionic Gemini surfactants with high activity[J]. Advances in Fine Petrochemicals, 2011, 12(9): 25-29. | |
54 | 宋筱江. 含氟双子型表面活性剂的合成及性能研究[D]. 贵阳: 贵州大学, 2022. |
SONG Xiaojiang. Synthesis and properties of fluorinated Gemini surfactant abstract[D]. Guiyang: Guizhou University, 2022. | |
55 | BUNTON Clifford A, ROBINSON Lawrence Baylor, SCHAAK J, et al. Catalysis of nucleophilic substitutions by micelles of dicationic detergents[J]. The Journal of Organic Chemistry, 1971, 36(16): 2346-2350. |
56 | MENGER F, LITTAU C. Gemini surfactants: A new class of self-assembling molecules[J]. Journal of the American Chemical Society, 1993, 115: 10083-10090. |
57 | YOSHIMURA Tomokazu, ESUMI Kunio. Synthesis and surface properties of anionic Gemini surfactants with amide groups[J]. Journal of Colloid and Interface Science, 2004, 276(1): 231-238. |
58 | 谭中良. Gemini表面活性剂的特性及耐盐活性研究[J]. 精细与专用化学品, 2006, 14(z1): 50-54. |
TAN Zhongliang. Study on characteristics and salt-endurance activity of Gemini surfactant[J]. Fine and Specialty Chemicals, 2006, 14(z1): 50-54. | |
59 | 刘彝, 吴均, 宋颖志, 等. 南堡油田低渗透油藏双子表面活性剂增注技术的应用研究[J]. 中国矿业, 2022, 31(z1): 460-464. |
LIU Yi, WU Jun, SONG Yingzhi, et al. Study and application of low permeability quaternary binary surfactant online injection technology in Nanpu Oil Field[J]. China Mining Magazine, 2022, 31(z1): 460-464. | |
60 | 郑宪宝. 低渗透油藏驱油用耐温抗盐型表面活性剂研究[J]. 石油化工高等学校学报, 2021, 34(6): 70-75. |
ZHENG Xianbao. Study on temperature and salt resistant surfactant for oil displacement in low permeability reservoir[J]. Journal of Petrochemical Universities, 2021, 34(6): 70-75. | |
61 | 赵梓平. 驱油用两性离子型双子表面活性剂的合成及应用[J]. 断块油气田, 2019, 26(1): 119-122. |
ZHAO Ziping. Synthesis and application of zwitterionic Gemini surfactant flooding agent[J]. Fault-Block Oil & Gas Field, 2019, 26(1): 119-122. | |
62 | 李长平, 赵春立, 李浩然, 等. 双子Gemini表面活性剂在低渗油藏中耐温耐盐性研究进展[J]. 应用化工, 2020, 49(8): 2107-2111. |
LI Changping, ZHAO Chunli, LI Haoran, et al. Advances in the study of temperature and salt resistance of Gemini surfactants in low-seepage reservoirs[J]. Applied Chemical Industry, 2020, 49(8): 2107-2111. | |
63 | KAMAL Muhammad Shahzad, SULTAN Abdullah Saad, AL-MUBAIYEDH Usamah A, et al. Evaluation of rheological and thermal properties of a new fluorocarbon surfactant-polymer system for EOR applications in high-temperature and high-salinity oil reservoirs[J]. Journal of Surfactants and Detergents, 2014, 17(5): 985-993. |
64 | 王磊, 杨丽秋, 曹旭祥. 高温高盐油藏三次采油用氟碳表面活性剂-聚合物体系流变性能研究[J]. 能源化工, 2023, 44(1): 39-43. |
WANG Lei, YANG Liqiu, CAO Xuxiang. Study on rheology of fluorocarbon surfactant-polymer system for tertiary oil recovery in high temperature and high salt reservoir[J]. Energy Chemical Industry, 2023, 44(1): 39-43. | |
65 | 程琪. 氟碳表面活性剂的合成及性能[D]. 青岛: 中国石油大学(华东), 2013. |
CHENG Qi. Synthesis and property of fluorocarbon surfactant[D]. Qingdao: China University of Petroleum (East China), 2013. | |
66 | 龙光斗, 肖舒, 付冬梅, 等. 全氟丁基阳离子表面活性剂的合成与表面性能[J]. 有机氟工业, 2012(3): 1-4. |
LONG Guangdou, XIAO Shu, FU Dongmei, et al. Synthesis and properties of cationic surfactant perfluorobutyl[J]. Organo-Fluorine Industry, 2012(3): 1-4. | |
67 | Masahiko ABE. Synthesis and applications of surfactants containing fluorine[J]. Current Opinion in Colloid & Interface Science, 1999, 4(5): 354-356. |
68 | 赵春霞, 徐卡秋, 唐聪明. 氟碳表面活性剂及其在消防领域中的应用[J]. 日用化学工业, 2004, 34(6): 377-380. |
ZHAO Chunxia, XU Kaqiu, TANG Congming. Fluorosurfactant and its application in fire-fighting field[J]. China Surfactant Detergent & Cosmetics, 2004, 34(6): 377-380. | |
69 | 李莉, 李欢玲, 韩从辉 等. 两性氟碳/碳氢表面活性剂复配体系的润湿性能[J]. 有机氟工业, 2018(3): 1-7. |
LI Li, LI Huanling, HAN Conghui, et al. Wettability of amphoteric fluorocarbon surfactant/hydrocarbon surfactants blend systems[J]. Organo-Fluorine Industry, 2018(3): 1-7. | |
70 | 李远翔, 安娜, 乔建江. 氟碳-碳氢表面活性剂复配及其灭火性能[J]. 华东理工大学学报(自然科学版), 2015, 41(4): 502-507. |
LI Yuanxiang, AN Na, QIAO Jianjiang. Mixed system of fluorocarbon-hydrocarbon surfactants and its fire extinguishing performance[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2015, 41(4): 502-507. | |
71 | 曹友桂, 李方山, 章于川. 对全氟壬烯氧基苯磺酸钠的合成、表征与应用[J]. 精细化工, 2012, 29(2): 174-177. |
CAO Yougui, LI Fangshan, ZHANG Yuchuan. Synthesis, characterization and application of sodium p-perfluorous nonenoxybenzene sulfonate[J]. Fine Chemicals, 2012, 29(2): 174-177. | |
72 | 曾毓华. 氟碳表面活性剂[M]. 北京: 化学工业出版社, 2001. |
ZENG Yuhua. Fluorocarbon surfactant[M]. Beijing: Chemical Industry Press, 2001. | |
73 | 张昱. 新型非离子型氟碳表面活性剂的合成及性能研究[D]. 上海: 上海交通大学, 2011. |
ZHANG Yu. Synthesis and properties of non-ionic fluorocarbon surfactant [D]. Shanghai: Shanghai Jiao Tong University, 2011. | |
74 | 徐于娇. 新型含氟表面活性剂的制备研究[D]. 上海: 华东理工大学, 2011. |
XU Yujiao. Synthesis and properties of novel fluorocarbon surfactants[D]. Shanghai: East China University of Science and Technology, 2011. | |
75 | 陈慧卿. 氧杂全氟烷基聚乙二醇系氟碳表面活性剂的合成及性能研究[D]. 上海: 上海交通大学, 2009. |
CHEN Huiqing. Study on synthesis and properties of oxa-perfluoroalkyl end-capped PEG-based fluorocarbon surfactants[D]. Shanghai: Shanghai Jiao Tong University, 2009. | |
76 | WANG Guoyong, YIN Qiwen, SHEN Jixian, et al. Surface activities and aggregation behaviors of cationic-anionic fluorocarbon-hydrocarbon surfactants in dilute solutions[J]. Journal of Molecular Liquids, 2017, 234: 142-148. |
77 | 曹国庆, 周娟, 卢永斌, 等. 新型表面活性剂驱油效果研究[J]. 应用化工, 2013, 42(11): 2045-2047. |
CAO Guoqing, ZHOU Juan, LU Yongbin, et al. Study on the oil displacement efficiency of the new surfactant[J]. Applied Chemical Industry, 2013, 42(11): 2045-2047. | |
78 | SONG Aixin, DONG Shuli, HAO Jingcheng, et al. Functions of fluorosurfactants 1: Surface activities-improved and vesicle formation of the short-tailed chain sulfonate salt mixed with a fluorosurfactant[J]. Journal of Fluorine Chemistry, 2005, 126: 1266-1273. |
79 | 刘慧瑾, 杜芳艳, 高立国, 等. 十二烷基苯磺酸钠与非离子氟碳表面活性剂复合驱油剂的研究[J]. 应用化工, 2012, 41(6): 1025-1027. |
LIU Huijin, DU Fangyan, GAO Liguo, et al. Study of dodecyl benzenesulfonic acid sodium salt with non-ionic fluorocarbon surfactant sodium composite displacing agent[J]. Applied Chemical Industry, 2012, 41(6): 1025-1027. | |
80 | 许祖勋, 薛龙, 张创. 新型氟碳离子型表面活性剂的合成与性能[J]. 胶体与聚合物, 2015, 33(2): 62-64. |
XU Zuxun, XUE Long, ZHANG Chuang. Synthesis and characterization of novel ionic fluorocarbon surfactants[J]. Chinese Journal of Colloid & Polymer, 2015, 33(2): 62-64. | |
81 | 王彦玲, 赵修太, 胡娟, 等. 全氟辛酸二乙醇酰胺的合成与表面活性研究[C]//2008年中国油田钻井化学品开发应用研讨会. 2008年中国油田钻井化学品开发应用研讨会论文集, 2008: 122-124. |
WANG Yanling, ZHAO Xiutai, HU Juan, et al. Study on synthesis and surface activity of perfluorooctanoic acid diethanolamide[C]// 2008 China Oilfield Drilling Chemicals Development and Application Seminar. Proceedings of the 2008 China Oilfield Drilling Chemicals Development and Application Symposium, 2008: 122-124. | |
82 | 王辉辉. 高活性氟碳表面活性剂研究[D]. 青岛: 中国石油大学(华东), 2008. |
WANG Huihui. Study on high-activity fluorocarbon surfactants[D]. Qingdao: China University of Petroleum (East China), 2008. | |
83 | 周杰华. 新型全氟聚醚衍生氟碳表面活性剂的合成及性能[D]. 上海: 东华大学, 2013. |
ZHOU Jiehua. Synthesis and performance of novel perfluoropolyether derivatived fluorocarbon surfactants[D]. Shanghai: Donghua University, 2013. | |
84 | 周毓棠, 唐雨佳, 金勇. 含氟表面活性剂的复配及其应用研究进展[J]. 皮革科学与工程, 2020, 30(5): 26-32. |
ZHOU Yutang, TANG Yujia, JIN Yong. Progress in research and application of fluorinated surfactants mixed systems[J]. Leather Science and Engineering, 2020, 30(5): 26-32. | |
85 | 曹绪龙, 季岩峰, 祝仰文, 等. 聚合物驱研究进展及技术展望[J]. 油气藏评价与开发, 2020, 10(6): 8-16. |
CAO Xulong, JI Yanfeng, ZHU Yangwen, et al. Research advance and technology outlook of polymer flooding[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(6): 8-16. | |
86 | Jagar A ALI, KOLO Kamal, MANSHAD Abbas Khaksar, et al. Potential application of low-salinity polymeric-nanofluid in carbonate oil reservoirs: IFT reduction, wettability alteration, rheology and emulsification characteristics[J]. Journal of Molecular Liquids, 2019, 284: 735-747. |
87 | CHEN Quansheng, WANG Yu, LU Zhiyong, et al. Thermoviscosifying polymer used for enhanced oil recovery: Rheological behaviors and core flooding test[J]. Polymer Bulletin, 2013, 70(2): 391-401. |
88 | 金亚杰. 国外聚合物驱油技术研究及应用现状[J]. 非常规油气, 2017, 4(1): 116-122. |
JIN Yajie. Progress in research and application of polymer flooding technology abroad[J]. Unconventional Oil & Gas, 2017, 4(1): 116-122. | |
89 | 夏燕敏, 陈安猛, 宋晓芳. 三次采油用耐温抗盐聚合物的研究进展[J]. 广东化工, 2009, 36(6): 92-94. |
XIA Yanmin, CHEN Anmeng, SONG Xiaofang. Research progress of temperature resistant and salt resistant polymers as flooding agent in tertiary oil recovery[J]. Guangdong Chemical Industry, 2009, 36(6): 92-94. | |
90 | 张西子. 聚合物驱油技术提高油田采收率分析与研究[J]. 内江科技, 2022, 43(9): 79-80. |
ZHAGN Xizi. Analysis and research on improving oilfield recovery rate through polymer flooding technology[J]. Neijiang Technology, 2022, 43(9): 79-80. | |
91 | 王启民, 廖广志, 牛金刚, 等. 聚合物驱油技术的实践与认识[J]. 大庆石油地质与开发, 1999, 18(4): 1. |
WANG Qimin, LIAO Guangzhi, NIU Jingang, et al. Theoretical research on polymer flooding[J]. Petroleum Geology & Oilfield Development in Daqing, 1999, 18(4): 1. | |
92 | 李新勇, 罗攀登, 刘坤, 等. 含有吗啉基的耐温抗盐聚合物合成及性能[J]. 当代化工, 2020, 49(5): 838-841. |
LI Xinyong, LUO Pandeng, LIU Kun, et al. Synthesis and performance evaluation of salt-resistant and heat-tolerant polymer containing morpholine groups[J]. Contemporary Chemical Industry, 2020, 49(5): 838-841. | |
93 | 王成旗, 李一慧, 张金山, 等. 大庆油田化学驱提高采收率研究进展[J]. 化学工程师, 2021(6): 61-64. |
WANG Chengqi, LI Yihui, ZHANG Jinshan, et al. Development of enhanced oil recovery by chemical flooding in Daqing Oilfield[J]. Chemical Engineer, 2021(6): 61-64. | |
94 | 郭娜, 梁珂, 李亮, 等. 塔河油田耐温抗盐驱油聚合物的筛选及性能评价[J]. 石油钻采工艺, 2020, 42(2): 222-226. |
GUO Na, LIANG Ke, LI Liang, et al. Screening and performance evaluation on temperature tolerant and salinity resistant polymer used in the Tahe Oilfield[J]. Oil Drilling & Production Technology, 2020, 42(2): 222-226. | |
95 | 王桂芹, 陈涛, 张蕊, 等. 新型耐温抗盐疏水缔合聚合物的制备及性能[J]. 石油化工, 2020, 49(7): 657-663. |
WANG Guiqin, CHEN Tao, ZHANG Rui, et al. Preparation and performance of a novel hydrophobic associating polymer with excellent temperature-resistance and salt-tolerance[J]. Petrochemical Technology, 2020, 49(7): 657-663. | |
96 | 张成, 赵海涛, 熊跃武, 等. 适合高温高矿化度油藏的新型聚合物驱油剂研究[J]. 化学工程师, 2022, 36(7): 51-54. |
ZHANG Cheng, ZHAO Haitao, XIONG Yuewu, et al. Study on new polymer flooding agent suitable for high temperature and high salinity reservoir[J]. Chemical Engineer, 2022, 36(7): 51-54. | |
97 | 刘学伟. 耐温抗盐型高效聚合物驱油剂的研制及应用[J]. 断块油气田, 2020, 27(4): 474-477. |
LIU Xuewei. Development and application of high efficiency polymer flooding agent with temperature and salt resistance[J]. Fault-Block Oil & Gas Field, 2020, 27(4): 474-477. | |
98 | WANG Yu, FENG Yujun, WANG Biqing, et al. A novel thermoviscosifying water-soluble polymer: Synthesis and aqueous solution properties[J]. Journal of Applied Polymer Science, 2010, 116(6): 3516-3524. |
99 | 姚峰. 耐温抗盐聚合物性能及驱油效率研究[J]. 科学技术与工程, 2017, 17(9): 187-192. |
YAO Feng. Study on property and oil-displacement efficiency of polymer with heat and salt resistance[J]. Science Technology and Engineering, 2017, 17(9): 187-192. | |
100 | 侯吉瑞, 宋考平, 闻宇晨. 聚合物驱后老油田提高采收率技术发展方向[J]. 前瞻科技, 2023, 2(2): 47-61. |
Hou Jirui, SONG Kaoping, Wen Yuchen. Development trend of enhanced oil recovery technology in old oilfields after polymer flooding[J]. Science and Technology Foresight, 2023, 2(2): 47-61. | |
101 | 王瑞飞, 陈军斌, 孙卫. 特低渗透砂岩油田开发贾敏效应探讨——以鄂尔多斯盆地中生界延长组为例[J]. 地质科技情报, 2008, 27(5): 82-86. |
WANG Ruifei, CHEN Junbin, SUN Wei. Jamin effect in the ultra-low permeability sandstone oil field development: An example from Yanchang Formation of Mesozoic strata[J]. Bulletin of Geological Science and Technology, 2008, 27(5): 82-86. | |
102 | 张更, 陈雨飞, 郑浩, 等. 泡沫驱油机理研究综述[J]. 当代化工研究, 2017(11): 6-7. |
ZHANG Geng, CHEN Yufei, ZHENG Hao, et al. A research overview on the mechanism of foam oil displacement mechanism[J]. Modern Chemical Research, 2017(11): 6-7. | |
103 | 陈转转, 陈社斌. 泡沫驱油理论与应用[J]. 中国石油和化工标准与质量, 2014, 34(1): 94. |
CHEN Zhuanzhuan, CHEN Shebin. Theory and application of foam flooding[J]. China Petroleum and Chemical Standard and Quality, 2014, 34(1): 94. | |
104 | 李兆敏, 徐正晓, 李宾飞, 等. 泡沫驱技术研究与应用进展[J]. 中国石油大学学报(自然科学版), 2019, 43(5): 118-127. |
LI Zhaomin, XU Zhengxiao, LI Binfei, et al. Advances in research and application of foam flooding technology[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(5): 118-127. | |
105 | 闫应德. 高盐泡沫驱油体系研制及稳定机制研究[D]. 北京: 中国石油大学(北京), 2021. |
YAN Yingde. Development and stabilization mechanism of high salt foam flooding system[D]. Beijing: China University of Petroleum (Beijing), 2021. | |
106 | ZHANG Yu, LI Binfei, LU Teng, et al. Adaptation study on nitrogen foam flooding in thick reservoirs with high water cut and high permeability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657: 130539. |
107 | FRIED A N. The foam process for increasing the recovery of oil[R]. United States: Bureau of Mines, 1961. |
108 | HOLM L W. Foam injection test in the Siggins field, Illinois[J]. Journal of Petroleum Technology, 1970, 22(12): 1499-1506. |
109 | TAO Jiaping, DAI Caili, ZHAO Guang, et al. Experimental study of temperature resistance and salt tolerance dispersed particle gel three-phase foam[C]// Springer series in geomechanics and geoengineering. Singapore: Springer Singapore, 2018: 1041-1054. |
110 | 李宏, 王春彦, 宋奇, 等. 耐温型冻胶泡沫调驱体系的性能研究[J]. 精细石油化工进展, 2012, 13(2): 1-4. |
LI Hong, WANG Chunyan, SONG Qi, et al. Study on performance of heat resistant jel foam profile control and oil displacement system[J]. Advances in Fine Petrochemicals, 2012, 13(2): 1-4. | |
111 | 张营华. 耐温抗盐CO2泡沫剂室内实验研究[J]. 精细石油化工进展, 2017, 18(1): 28-30. |
ZHANG Yinghua. Laboratory experimental study on heat resistant and salt tolerant CO2 foamer[J]. Advances in Fine Petrochemicals, 2017, 18(1): 28-30. | |
112 | 高海涛, 李雪峰, 赵斌, 等. ZY型耐温耐盐泡沫体系的研制及性能评价[J]. 断块油气田, 2010, 17(3): 369-371. |
GAO Haitao, LI Xuefeng, ZHAO Bin, et al. Development and performance evaluation of ZY type temperature-resistant and salt-resistant foam system[J]. Fault-Block Oil & Gas Field, 2010, 17(3): 369-371. | |
113 | 李海涛, 高元, 陈安胜, 等. 泡沫体系在油田中的应用及发展趋势[J]. 精细石油化工进展, 2010, 11(2): 22-26. |
LI Haitao, GAO Yuan, CHEN Ansheng, et al. Application and development of foam system in oilfield[J]. Advances in Fine Petrochemicals, 2010, 11(2): 22-26. | |
114 | 席玲慧. 耐温抗盐泡沫调驱体系发展现状[J]. 当代化工研究, 2023(11): 17-19. |
XI Linghui. Progress of foam regulating and flooding system with temperature and salt resistance[J]. Modern Chemical Research, 2023(11): 17-19. | |
115 | 李春, 屈策计, 宗廷昊, 等. 适合低渗透油藏的空气泡沫驱油技术研究及应用[J]. 当代化工, 2022, 51(7): 1664-1667. |
LI Chun, QU Ceji, ZONG Tinghao, et al. Research and application of air foam flooding technology for low permeability reservoirs[J]. Contemporary Chemical Industry, 2022, 51(7): 1664-1667. | |
116 | 张中太, 林元华, 唐子龙, 等. 纳米材料及其技术的应用前景[J]. 材料工程, 2000(3): 42-48. |
ZHANG Zhongtai, LIN Yuanhua, TANG Zilong, et al. Nanometer materials & nanotechology and their application prospect[J]. Journal of Materials Engineering, 2000(3): 42-48. | |
117 | YAKASAI Faruk, JAAFAR Mohd Zaidi, BANDYOPADHYAY Sulalit, et al. Current developments and future outlook in nanofluid flooding: A comprehensive review of various parameters influencing oil recovery mechanisms[J]. Journal of Industrial and Engineering Chemistry, 2021, 93: 138-162. |
118 | NAZARI MOGHADDAM Rasoul, BAHRAMIAN Alireza, FAKHROUEIAN Zahra, et al. Comparative study of using nanoparticles for enhanced oil recovery: Wettability alteration of carbonate rocks[J]. Energy & Fuels, 2015, 29(4): 2111-2119. |
119 | 张玉松, 刘琦, 彭勃, 等. 智能纳米化学驱油剂研究现状[J]. 现代化工, 2020, 40(6): 19-23. |
ZHANG Yusong, LIU Qi, PENG Bo, et al. Development of smart nanomaterials for enhanced oil recovery[J]. Modern Chemical Industry, 2020, 40(6): 19-23. | |
120 | FOROOZESH Jalal, KUMAR Sunil. Nanoparticles behaviors in porous media: Application to enhanced oil recovery[J]. Journal of Molecular Liquids, 2020, 316: 113876. |
121 | SALEM RAGAB Adel M, HANNORA Ahmed E. A comparative investigation of nano particle effects for improved oil recovery-experimental work[C]// SPE Kuwait Oil and Gas Show and Conference. SPE, 2015. |
122 | SEFIANE Khellil, SKILLING Jennifer, MACGILLIVRAY Jamie. Contact line motion and dynamic wetting of nanofluid solutions[J]. Advances in Colloid and Interface Science, 2008, 138(2): 101-120. |
123 | BETANCUR Stefanía, OLMOS Carol M, Maximiliano PÉREZ, et al. A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106589. |
124 | WASAN Darsh, NIKOLOV Alex, KONDIPARTY Kirti. The wetting and spreading of nanofluids on solids: Role of the structural disjoining pressure[J]. Current Opinion in Colloid & Interface Science, 2011, 16(4): 344-349. |
125 | 张创, 王成龙, 时圣彪, 等. 纳米智能驱油技术研究现状及发展趋势[J]. 应用化工, 2022, 51(7): 2101-2105. |
ZHANG Chuang, WANG Chenglong, SHI Shengbiao, et al. Research status and development trend of nano-intelligent oil displacement technology[J]. Applied Chemical Industry, 2022, 51(7): 2101-2105. | |
126 | 尚丹森, 伊卓, 刘希, 等. 低渗透油藏驱油用纳米流体的研究进展[J]. 石油化工, 2023, 52(1): 131-137. |
SHANG Dansen, YI Zhuo, LIU Xi, et al. Research progress on nano-fluid for oil displacement in low permeability reservoirs[J]. Petrochemical Technology, 2023, 52(1): 131-137. | |
127 | 汤昌盛, 王文珍, 吴亚. 强化采油用耐温抗盐驱油剂的研究进展[J]. 石油化工应用, 2020, 39(11): 9-13. |
TANG Changsheng, WANG Wenzhen, WU Ya. Research progress of temperature-tolerant and salt-resistant oil-displacing agents for enhanced oil recovery[J]. Petrochemical Industry Application, 2020, 39(11): 9-13. | |
128 | SADEGHALVAAD Mehran, SABBAGHI Samad. The effect of the TiO2/polyacrylamide nanocomposite on water-based drilling fluid properties[J]. Powder Technology, 2015, 272: 113-119. |
129 | 刘凡, 蒋官澄, 王凯, 等. 新型纳米材料在页岩气水基钻井液中的应用研究[J]. 钻井液与完井液, 2018, 35(1): 27-33. |
LIU Fan, JIANG Guancheng, WANG Kai, et al. Research on application of a novel nanophase material in water base drilling fluids for shale drilling[J]. Drilling Fluid & Completion Fluid, 2018, 35(1): 27-33. | |
130 | 武元鹏, 田应佩, 罗平亚, 等. 纳米碳酸钙的制备及在水基钻井液的应用研究[J]. 钻井液与完井液, 2019, 36(4): 407-413. |
WU Yuanpeng, TIAN Yingpei, LUO Pingya, et al. Preparation of nanoparticle calcium carbonate and study of its use in water base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(4): 407-413. | |
131 | 郑淑杰, 蒋官澄, 肖成才, 等. 纳米材料钻井液在大港油田的应用[J]. 钻井液与完井液, 2017, 34(5): 14-19. |
ZHENG Shujie, JIANG Guancheng, XIAO Chengcai, et al. Application of a nanomaterial drilling fluid in Dagang Oilfield[J]. Drilling Fluid & Completion Fluid, 2017, 34(5): 14-19. | |
132 | 冯晓羽, 侯吉瑞, 程婷婷, 等. 油酸改性纳米TiO2的制备及其驱油性能评价[J]. 油田化学, 2019, 36(2): 280-285. |
FENG Xiaoyu, HOU Jirui, CHENG Tingting, et al. Preparation and oil displacement properties of oleic acid-modified nano-TiO2 [J]. Oilfield Chemistry, 2019, 36(2): 280-285. | |
133 | JIA Han, HUANG Pan, HAN Yugui, et al. Synergistic effects of Janus graphene oxide and surfactants on the heavy oil/water interfacial tension and their application to enhance heavy oil recovery[J]. Journal of Molecular Liquids, 2020, 314: 113791. |
134 | MASHAT Afnan, Amr ABDEL-FATTAH, GIZZATOV Ayrat. NanoSurfactant: A novel nanoparticle-based EOR approach[C]// SPE Europec featured at 80th EAGE Conference and Exhibition. Society of Petroleum Engineers, 2018: 1-7 |
135 | QU Ming, HOU Jirui, LIANG Tuo, et al. Amphiphilic rhamnolipid molybdenum disulfide nanosheets for oil recovery[J]. ACS Applied Nano Materials, 2021, 4(3): 2963-2972. |
136 | 孙玥, 李琳, 戴彩丽, 等. 耐高温抗高盐碳基纳米颗粒的制备及降压增注性能研究[C]//2023国际石油石化技术会议. 2023国际石油石化技术会议论文集, 2023. |
SUN Yue, LI Lin, DAI Caili, et al. Preparation of High Temperature and Salt Resistant Carbon-based Nanoparticles and Step-down Augmented Injection Performance Evaluation[C]// The International Petroleum & Petrochemical Technology Conference. Proceedings of 2023 International Petroleum and Petrochemical Technology Conference, 2023. | |
137 | RODRIGUEZ Elena, ROBERTS Matthew R, YU Haiyang, et al. Enhanced migration of surface-treated nanoparticles in sedimentary rocks[C]// SPE Annual Technical Conference and Exhibition. SPE, 2009. |
138 | RAHMANI Amir Reza, ATHEY Alex E, CHEN Jiuping, et al. Sensitivity of dipole magnetic tomography to magnetic nanoparticle injectates[J]. Journal of Applied Geophysics, 2014, 103: 199-214. |
139 | NGATA Mbega Ramadhani, YANG Baolin, AMINU Mohammed Dahiru, et al. Review of developments in nanotechnology application for formation damage control[J]. Energy & Fuels, 2022, 36(1): 80-97. |
140 | MA Lan, LUO Pingya, HE Yi, et al. Improving the stability of multi-walled carbon nano-tubes in extremely environments: Applications as nano-plugging additives in drilling fluids[J]. Journal of Natural Gas Science and Engineering, 2020, 74: 103082. |
[1] | 李镇武, 蒲迪, 熊亚春, 吴定莹, 金诚, 郭拥军. 驱油用纳米材料在提高采收率方面研究进展[J]. 化工进展, 2024, 43(9): 5035-5048. |
[2] | 刘宇龙, 姚俊虎, 舒闯闯, 佘跃惠. 磁性Fe3O4纳米颗粒的生物合成及其在提高采收率中的应用[J]. 化工进展, 2023, 42(5): 2464-2474. |
[3] | 于洋, 刘琦, 彭勃, 吕静. 微生物降解稠油中沥青质的研究进展[J]. 化工进展, 2021, 40(3): 1574-1585. |
[4] | 王晨伊,刘琦,彭勃,吕静. Surfactin生物表面活性剂及其驱油研究进展[J]. 化工进展, 2019, 38(9): 4012-4019. |
[5] | 李原,狄勤丰,华帅,张景楠,叶峰,王文昌. 纳米流体对储层润湿性反转提高石油采收率研究进展[J]. 化工进展, 2019, 38(08): 3612-3620. |
[6] | 杨兆中, 朱静怡, 李小刚, 费阳, 徐彬予. 纳米颗粒稳定泡沫在油气开采中的研究进展[J]. 化工进展, 2017, 36(05): 1675-1681. |
[7] | 李 杰1,田 岚1,吴文祥2,尹 璐1,刘建峰1. 磺酸盐型低聚表面活性剂的合成研究进展[J]. 化工进展, 2013, 32(06): 1385-1394. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 95
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 200
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |