化工进展 ›› 2019, Vol. 38 ›› Issue (9): 4012-4019.DOI: 10.16085/j.issn.1000-6613.2019-0005
收稿日期:
2019-01-02
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
刘琦
作者简介:
王晨伊(1995—),女,硕士研究生,研究方向为油田化学工程。E-mail:基金资助:
Chenyi WANG1,2(),Qi LIU1,2(),Bo PENG1,2,Jing LÜ3
Received:
2019-01-02
Online:
2019-09-05
Published:
2019-09-05
Contact:
Qi LIU
摘要:
表面活性素(surfactin)是一类由革兰氏阳性的枯草芽孢杆菌产生的脂肽(lipopeptide)型生物表面活性剂,因其具有优于化学合成表面活性剂的若干优点,如低毒性、高生物降解性、更好的环境相容性,且在极端环境下稳定性好,在提高石油采收率方面有较好的应用潜力,但是目前只有少数的生物表面活性剂可以大规模生产实现工业化应用。本文介绍了surfactin生物表面活性剂的化学结构和生物合成机制,并对其发酵生产过程的影响因素进行分析,为提高其生产经济性探索不同的策略,例如使用更便宜的原材料、优化培养基组分、优化反应器等,系统论述了surfactin生物表面活性剂的驱油机理和其与化学合成表面活性剂的复配研究,同时针对其应用时的不足之处提出研究新思路。
中图分类号:
王晨伊,刘琦,彭勃,吕静. Surfactin生物表面活性剂及其驱油研究进展[J]. 化工进展, 2019, 38(9): 4012-4019.
Chenyi WANG,Qi LIU,Bo PENG,Jing LÜ. Review on surfactin biosurfactant and its performance ofenhanced oil recovery[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4012-4019.
生物表面活性剂 | 生产菌株 |
---|---|
表面活性素(surfactin) | B. subtilis BC1212 |
B. subtilis ATCC 21332 | |
B.subtilis IAM 1213 | |
伊枯草菌素(iturin) | B. subtilis RB14-CS |
B. subtilis K1 | |
Bacillus sp. BH072 | |
丰原素(fengycin) | B. subtilis B6-1 |
B. subtilis F29-3 | |
B. subtilis CPA-8 | |
surfactin 和 fengycin | B. subtilis A21 |
B. licheniformis V9T14 | |
地衣素(lichenysin) | B. licheniformis BNP29 |
B. licheniformis BAS50 |
表1 主要的脂肽类表面活性剂生产菌株
生物表面活性剂 | 生产菌株 |
---|---|
表面活性素(surfactin) | B. subtilis BC1212 |
B. subtilis ATCC 21332 | |
B.subtilis IAM 1213 | |
伊枯草菌素(iturin) | B. subtilis RB14-CS |
B. subtilis K1 | |
Bacillus sp. BH072 | |
丰原素(fengycin) | B. subtilis B6-1 |
B. subtilis F29-3 | |
B. subtilis CPA-8 | |
surfactin 和 fengycin | B. subtilis A21 |
B. licheniformis V9T14 | |
地衣素(lichenysin) | B. licheniformis BNP29 |
B. licheniformis BAS50 |
方法名称 | 实验原理 | 优势 | 劣势 | 参考文献 |
---|---|---|---|---|
分析方法 | ||||
溶剂萃取法 | 利用溶解度差异,常用萃取剂有甲醇、氯仿、二氯甲烷、乙酸乙酯、己烷等 | 有机溶剂的可重复利用性 | 有机溶剂对人体、环境有害,纯度低 | [ |
酸沉降法 | LP在低pH下不溶,粗生物表面活性剂可以沉淀 | 简单、廉价且易于回收粗BS如LP | 选择性差,纯度低,水溶性表面活性剂不适用 | [ |
渗析法 | 利用溶质浓度的差异,通过渗析来纯化水溶性细胞外化合物 | 有效分离胶束生物表面活性剂,可重复,快速回收 | 操作条件要求高 | [ |
高效液相色谱法 | 利用各组分与固定相作用时间的不同实现混合物的分离 | 纯度高,可分离不同的脂肽异构体用于鉴定 | 操作条件要求高,成本高 | [ |
离子交换色谱法 | 用适当的缓冲液从离子交换树脂上洗脱 | 高纯度,可重复性,快速回收,高通量 | 操作条件要求高,成本高 | [ |
聚苯乙烯树脂吸附 | LP被吸附在聚合物树脂上,随后用有机溶剂解吸 | 快速,一步回收,高纯度,可重复使用,高通量 | 产生废液,样品损失大 | [ |
制备方法 | ||||
薄膜超滤法 | LP形成胶束的浓度高于临界胶束浓度,可以通过连续超滤与培养液中的其他分子分离 | 减小了因提取条件的物理化学变化而引起表面活性剂分子变性的可能;回收产量高;加入化学药剂少,能耗低,有效降低成本 | surfactin在膜表面聚集造成浓差极化,在膜上形成污垢,影响到传递效率 | [ |
木炭吸附法 | 物理吸附 | 高纯度,可重复性,从连续培养基中高通量的廉价回收 | 产生废液,样品损失大 | [ |
泡沫分离法 | 收集泡沫(通过分馏塔)并用HCl酸化至pH 1.0~2.0以沉淀LP,再用有机溶剂提取 | 消除泡沫及产物对微生物的不利影响;实现了与发酵过程的耦合,降低生产成本,可用于大规模工业生产回收 | 提取物中有菌体细胞,纯度低,改变了培养基和菌体的浓度 | [ |
表2 从培养基中回收脂肽(LIPOPEPTIDE)的方法和优劣势
方法名称 | 实验原理 | 优势 | 劣势 | 参考文献 |
---|---|---|---|---|
分析方法 | ||||
溶剂萃取法 | 利用溶解度差异,常用萃取剂有甲醇、氯仿、二氯甲烷、乙酸乙酯、己烷等 | 有机溶剂的可重复利用性 | 有机溶剂对人体、环境有害,纯度低 | [ |
酸沉降法 | LP在低pH下不溶,粗生物表面活性剂可以沉淀 | 简单、廉价且易于回收粗BS如LP | 选择性差,纯度低,水溶性表面活性剂不适用 | [ |
渗析法 | 利用溶质浓度的差异,通过渗析来纯化水溶性细胞外化合物 | 有效分离胶束生物表面活性剂,可重复,快速回收 | 操作条件要求高 | [ |
高效液相色谱法 | 利用各组分与固定相作用时间的不同实现混合物的分离 | 纯度高,可分离不同的脂肽异构体用于鉴定 | 操作条件要求高,成本高 | [ |
离子交换色谱法 | 用适当的缓冲液从离子交换树脂上洗脱 | 高纯度,可重复性,快速回收,高通量 | 操作条件要求高,成本高 | [ |
聚苯乙烯树脂吸附 | LP被吸附在聚合物树脂上,随后用有机溶剂解吸 | 快速,一步回收,高纯度,可重复使用,高通量 | 产生废液,样品损失大 | [ |
制备方法 | ||||
薄膜超滤法 | LP形成胶束的浓度高于临界胶束浓度,可以通过连续超滤与培养液中的其他分子分离 | 减小了因提取条件的物理化学变化而引起表面活性剂分子变性的可能;回收产量高;加入化学药剂少,能耗低,有效降低成本 | surfactin在膜表面聚集造成浓差极化,在膜上形成污垢,影响到传递效率 | [ |
木炭吸附法 | 物理吸附 | 高纯度,可重复性,从连续培养基中高通量的廉价回收 | 产生废液,样品损失大 | [ |
泡沫分离法 | 收集泡沫(通过分馏塔)并用HCl酸化至pH 1.0~2.0以沉淀LP,再用有机溶剂提取 | 消除泡沫及产物对微生物的不利影响;实现了与发酵过程的耦合,降低生产成本,可用于大规模工业生产回收 | 提取物中有菌体细胞,纯度低,改变了培养基和菌体的浓度 | [ |
1 | SARAFZADEH P , NIAZI A , OBOODI V , et al . Investigating the efficiency of MEOR processes using Enterobacter cloacae and Bacillus stearothermophilus SUCPM#14 (biosurfactant-producing strains) in carbonated reservoirs[J]. Journal of Petroleum Science and Engineering, 2014, 113: 46-53. |
2 | 沈平平 . 提高采收率技术进展[M]. 北京: 石油工业出版社, 2006: 354. |
SHEN P P . Technology developments in enhanced oil recovery[M]. Beijing: Petroleum Industry Press, 2006: 354. | |
3 | GAO C H . Experiences of microbial enhance oil recovery in Chinese oil fields[J]. Journal of Petroleum Science & Engineering, 2018, 166: 55-62. |
4 | GEETHA S J , BANAT I M , JOSHI S J . Biosurfactants: production and potential applications in microbial enhanced oil recovery (MEOR)[J]. Biocatalysis & Agricultural Biotechnology, 2018, 14: 23-32. |
5 | IN S M, DHOUHA G . Lipopeptide surfactants: production, recovery and pore forming capacity[J]. Peptides, 2015, 71:100-112. |
6 | LIU J F , MBADINGA S , YANG S Z , et al . Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation[J]. International Journal of Molecular Sciences, 2015, 16(3):4814-4837. |
7 | KOSARICK N . Biosurfactants and biotechnology[M]//CAIRNS W L, GRAY N C C. Boca Raton: CRC Press, 1987: 344. |
8 | ARIMA K , KAKINUMA A , TAMURA G . Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation[J]. Biochemical & Biophysical Research Communications, 1968, 31(3): 488-494. |
9 | PEREIRA J F B , GUDIÑA E J , COSTA R , et al . Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications[J]. Fuel, 2013, 111(9): 259-268. |
10 | 刘向阳, 杨世忠, 牟伯中 . 微生物脂肽的结构[J]. 生物技术通报, 2005(4): 18-26. |
LIU X Y , YANG S Z , MOU B Z . Molecular structures of microbial lipopeptides[J]. Biotechnology Bulletin, 2005(4): 18-26. | |
11 | YAKIMOV M M , ABRAHAM W R , MEYER H , et al . Structural characterization of lichenysin A components by fast atom bombardment tandem mass spectrometry[J]. Biochimica et Biophysica Acta, 1999, 1438(2): 273-280. |
12 | PEYPOUX F , GUINAND M , MICHEL G , et al . Structure of iturine A, a peptidolipid antibiotic from Bacillus subtilis [J]. Biochemistry, 1978, 17(19): 3992-3996. |
13 | VANITTANAKOM N , LOEFFLER W , KOCH U , et al . Fengycin—a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3[J]. Journal of Antibiotics, 1986, 39(7): 888-901. |
14 | CHEN W C , JUANG R S , WEI Y H . Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms[J]. Biochemical Engineering Journal, 2015, 103: 158-169. |
15 | SHALIGRAM N S , SINGHAL R S . Surfactin―a review on biosynthesis, fermentation, purification and applications[J]. Food Technology & Biotechnology, 2010, 48(2): 119-134. |
16 | LIU Q , LIN J , WANG W , et al . Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions[J]. Biochemical Engineering Journal, 2015, 93: 31-37. |
17 | 李光 . Surfactin高产菌的高通量诱变筛选、发酵过程优化及提取[D]. 开封: 河南大学, 2017. |
LI G . High-throughputscreening of mutants of surfactin high-producing Bacillus subtilis, fermentation optimization and purification[D]. Kaifeng: Henan University, 2017. | |
18 | 王世媛 . 非核糖体肽合成酶(NRPSs)作用机理与应用的研究进展[J]. 微生物学报, 2007, 47(4): 734-737. |
WANG S Y . Advances in the mechanism and application of nonribosomal peptide synthetases(NRPSs)[J]. Acta Microbiologica Sinica, 2007, 47(4): 734-737. | |
19 | DATTAA P , TIWARI P , PANDEY L M . Isolation and characterization of biosurfactant producing and oil degrading Bacillus subtilis MG495086 from formation water of Assam oil reservoir and its suitability for enhanced oil recovery[J]. Bioresource Technology, 2018, 270: 439-448. |
20 | 吕应年, 杨世忠, 牟伯中 . 脂肽类生物表面活性剂的研究进展[J]. 生物技术通报, 2004 (6): 11-16. |
LÜ Y N , YANG S Z , MOU B Z . Progress of lipopeptide biosurfactants[J]. Biotechnology Bulletin, 2004 (6): 11-16. | |
21 | 李艳艳, 张剑 . 表面活性肽的研究进展[J]. 化学通报, 2017, 80(10): 918-924. |
LI Y Y , ZHANG J . Research progress in surfactin[J]. Chemistry, 2017, 80(10): 918-924. | |
22 | MUTHUSAMY K , GOPALAKRISHNAN S , RAVI T K , et al . Biosurfactants: properties, commercial production and application[J]. Current Science, 2008, 94(6): 736-747. |
23 | CARRERA P , COSMINA P , GRANDI G . Method of producing surfactin with the use of mutant of Bacillus subtilis: US005227294A[P]. 1993-07-13. |
24 | MULLIGAN C N , CHOW Y K , GIBBS B F . Enhanced biosurfactant production by a mutant Bacillus subtilis strain[J]. Applied Microbiology & Biotechnology, 1989, 31(5/6): 486-489. |
25 | YEH M S, WEI Y H , CHANG J S . Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis [J]. Process Biochemistry, 2006, 41(8): 1799-1805. |
26 | COUTTE F , LECOUTURIER D , YAHIA S A , et al . Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor[J]. Applied Microbiology & Biotechnology, 2010, 87(2): 499-507. |
27 | COUTTE F , LECOUTURIER D , DIMITROV K , et al . Microbial lipopeptide production and purifcation bioprocesses,current progress and future challenges[J]. Biotechnology Journal, 2017, 12(7): 1-10. |
28 | CHTIOUI O , DIMITROV K , GANCEL F , et al . Biosurfactants production by immobilized cells of Bacillus subtilis ATCC 21332 and their recovery by pertraction[J]. Process Biochemistry, 2010, 45(11): 1795-1799. |
29 | LU Z G , LIN Y P , WANG X-M . Method of using high-yield mutant strain of Bacillus subtilis ssp. for performing semi-solid state fermentation to produce surfactin: TW201621050 [P]. 2016-06-16. |
30 | XU Y , WU Q , ZHI Y , et al . Method of producing surfactin by applying Bacillus amyloliquefaciens: WO2018054059(A1) [P]. 2017-04-28. |
31 | 杨子云, 马科锋, 何禹锟, 等 . Surfactin的生产及在石油工业的应用研究进展[J]. 生物加工过程, 2018 (1): 67-74. |
32 | YANG Z Y , MA K F, HE Y K , et al . Advances in production of surfactin and its application in petroleum industry[J]. Chinese Journal of Bioprocess Engineering, 2018 (1): 67-74. |
33 | ALWAHAIBI Y , JOSHI S , ALBAHRY S , et al . Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery[J]. Colloids & Surfaces B: Biointerfaces, 2014, 114(8): 324-333. |
34 | HENTATI D , CHEBBI A , HADRICH F , et al . Production, characterization and biotechnological potential of lipopeptide biosurfactants from a novel marine Bacillus stratosphericus strain FLU5[J]. Ecotoxicology and Environmental Safety, 2019, 167: 441-449. |
35 | ZHANG J , XUE Q , GAO H , et al . Production of lipopeptide biosurfactants by Bacillus atrophaeus5-2a and their potential use in microbial enhanced oil recovery[J]. Microbial Cell Factories, 2016, 168(15): 1-11. |
36 | WEI Y H , LAI C C , CHANG J S . Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332[J]. Process Biochemistry, 2007, 42(1): 40-45. |
37 | KINSINGER R F , SHIRK M C , FALL R . Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion[J]. Journal of Bacteriology, 2003, 185(18): 5627-5631. |
38 | YEH M S, WEI Y H , CHANG J S . Enhanced production of surfactin from Bacillus subtilis by addition of solid carriers[J]. Biotechnology Progress, 2005, 21(4): 1329-1334. |
39 | COSBY W M , VOLLENBROICH D , LEE O H, et al . Altered srf Expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control[J]. Journal of Bacteriology, 1998, 180(6): 1438-1445. |
40 | YI G , QIANG L , LIN J , et al . Repeated batch fermentation for surfactin production with immobilized Bacillus subtilis BS-37 : two-stage pH control and foam fractionation: Surfactin production with immobilized Bacillus subtilis BS-37[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(3): 530-535. |
41 | JANEK T , ŁUKASZEWICZ M , REZANKA T , et al . Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard[J]. Bioresource Technology, 2010, 101(15): 6118-6123. |
42 | HADDAD N I , LIU X , YANG S , et al . Surfactin isoforms from Bacillus subtilis HSO121: separation and characterization[J]. Protein & Peptide Letters, 2008, 15(3): 265-269. |
43 | SOUSA T D , BHOSLE S . Isolation and characterization of a lipopeptide bioemulsifier produced by Pseudomonas nitroreducens TSB.MJ10 isolated from a mangrove ecosystem[J]. Bioresource Technology, 2012, 123(8): 256-262. |
44 | ZHANG T , SHI Z Q , HU L B , et al . Antifungal compounds from Bacillus subtilis B-FS06 inhibiting the growth of Aspergillus flavus [J]. World Journal of Microbiology & Biotechnology, 2008, 24(6): 783-788. |
45 | VELMURUGAN N , CHOI M S , HAN S S , et al . Evaluation of antagonistic activities of Bacillus subtilis and Bacillus licheniformis against wood-staining fungi: in vitro and in vivo experiments[J]. Journal of Microbiology, 2009, 47(4): 385-392. |
46 | CHEN H L , LEE Y S, WEI Y H , et al . Purification of surfactin in pretreated fermentation broths by adsorptive removal of impurities[J]. Biochemical Engineering Journal, 2008, 40(3): 452-459. |
47 | MULLIGAN C N , GIBBS B F . Recovery of biosurfactants by ultrafiltration[J]. Journal of Chemical Technology & Biotechnology, 1990, 47(1): 23-29. |
48 | LIU T , MONTASTRUC L , GANCEL F , et al . Integrated process for production of surfactin : Part 1: Adsorption rate of pure surfactin onto activated carbon[J]. Biochemical Engineering Journal, 2007, 35(3): 333-340. |
49 | DAVIS D A , LYNCH H C , VARLEY J . The application of foaming for the recovery of surfactin from B. subtilis ATCC 21332 cultures[J]. Enzyme & Microbial Technology, 2001, 28(4/5): 346-354. |
50 | 王大威, 刘永建, 杨振宇, 等 . 脂肽生物表面活性剂在微生物采油中的应用[J]. 石油学报, 2008, 29(1): 111-115. |
WANG D W , LIU Y J , YANG Z Y , et al . Application of surfactin in microbial enhanced oil recovery[J]. Acta Petrolei Sinica, 2008, 29(1): 111-115. | |
51 | 刘静 . 表面活性素与生物大分子之间相互作用的研究[D]. 上海: 华东理工大学, 2010. |
LIU J . Interaction between surfactant and biomacromolecules[D]. Shanghai: East China University of Science and Technology, 2010. | |
52 | AL-SULAIMANI H , AL-WAHAIBI Y , AL-BAHRY S , et al . Residual-oil recovery through injection of biosurfactant, chemical surfactant, and mixtures of both under reservoir temperatures: induced-wettability and interfacial-tension effects[J]. SPE Reservoir Evaluation & Engineering, 2012, 15(2): 210-217. |
53 | SARAFZADEH P , HEZAVE A Z , RAVANBAKHSH M , et al . Enterobacter cloacae as biosurfactant producing bacterium: differentiating its effects on interfacial tension and wettability alteration mechanisms for oil recovery during MEOR process[J]. Colloids & Surfaces B: Biointerfaces, 2013, 105(6): 223-229. |
54 | 张晓华, 姜岩, 岳希权, 等 . 生物表面活性剂驱油研究进展[J]. 化工进展, 2016, 35(7): 2033-2040. |
ZHNAG X Y , JIANG Y , YUE X Q , et al . Progress in the research of displacement of reservoir oil by biosurfactants[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2033-2040. | |
55 | LONG X , HE N , HE Y , et al . Biosurfactant surfactin with pH-regulated emulsification activity for efficient oil separation when used as emulsifier[J]. Bioresource Technology, 2017, 241: 200-206. |
56 | ASHISH, DEBNATH M . Application of biosurfactant produced by an adaptive strain of C.tropicalis MTCC230 in microbial enhanced oil recovery (MEOR) and removal of motor oil from contaminated sand and water[J]. Journal of Petroleum Science & Engineering, 2018, 170:40-48. |
57 | 王浩 . Surfactin与阴阳离子表面活性剂之间的相互作用[D]. 上海: 华东理工大学, 2014. |
WANG H . Interaction between surfactin and anionic surfactant[D]. Shanghai: East China University of Science and Technology, 2014. |
[1] | 刘宇龙, 姚俊虎, 舒闯闯, 佘跃惠. 磁性Fe3O4纳米颗粒的生物合成及其在提高采收率中的应用[J]. 化工进展, 2023, 42(5): 2464-2474. |
[2] | 包清华, 黄立信, 修建龙, 俞理, 崔庆锋, 马原栋, 伊丽娜. 油气田含油污泥生物处理技术研究进展[J]. 化工进展, 2021, 40(5): 2762-2773. |
[3] | 于洋, 刘琦, 彭勃, 吕静. 微生物降解稠油中沥青质的研究进展[J]. 化工进展, 2021, 40(3): 1574-1585. |
[4] | 李原,狄勤丰,华帅,张景楠,叶峰,王文昌. 纳米流体对储层润湿性反转提高石油采收率研究进展[J]. 化工进展, 2019, 38(08): 3612-3620. |
[5] | 杨兆中, 朱静怡, 李小刚, 费阳, 徐彬予. 纳米颗粒稳定泡沫在油气开采中的研究进展[J]. 化工进展, 2017, 36(05): 1675-1681. |
[6] | 刘 皓1,3,杨 欢2,3,袁 涛1,3,李 煦2,3,端木勉1,3,于慧敏2,3. 脂肽-糖脂混合型生物表面活性剂的性能及助剂[J]. 化工进展, 2013, 32(12): 2952-2956. |
[7] | 何海洋,陆利霞,姚丽丽,熊晓辉. 糖脂类生物表面活性剂的性质及其潜在应用进展 [J]. 化工进展, 2011, 30(3): 607-. |
[8] | 黄翔峰,彭开铭,刘 佳,陆丽君,祝 威. 生物表面活性素分离纯化技术进展 [J]. 化工进展, 2009, 28(10): 1820-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |