化工进展 ›› 2024, Vol. 43 ›› Issue (11): 6483-6492.DOI: 10.16085/j.issn.1000-6613.2023-1784
• 资源与环境化工 • 上一篇
赵凯月(), 朱春山(), 张宾朋, 赵美箐, 何昱铤, 王明锐
收稿日期:
2023-10-11
修回日期:
2023-11-16
出版日期:
2024-11-15
发布日期:
2024-12-07
通讯作者:
朱春山
作者简介:
赵凯月(1998—),女,硕士研究生,研究方向为生物质材料。E-mail:1733082150@qq.com。
ZHAO Kaiyue(), ZHU Chunshan(), ZHANG Binpeng, ZHAO Meijing, HE Yuting, WANG Mingrui
Received:
2023-10-11
Revised:
2023-11-16
Online:
2024-11-15
Published:
2024-12-07
Contact:
ZHU Chunshan
摘要:
以玉米秸秆(RCS)为原料,经碱性过氧化氢预处理后,在微波辅助作用下,以甲酸为催化剂、乙酸为溶剂和酯化剂改性得到酯化玉米秸秆(ECS)吸油材料。采用Box-Behnken法进行响应面实验设计,得到制备ECS的最佳条件为:甲酸质量分数为7%、固液体积比为1∶40、微波功率为400W、反应温度为100℃,反应时间为20min,制备的ECS对机油的吸油倍率达到25.47g/g,与回归模型预测值25.80g/g相差1.27%,表明该模型模拟良好。通过红外光谱仪、元素分析仪、扫描电镜、X射线衍射仪、热重分析仪和接触角测量仪的表征和测试表明,ECS的红外谱图中有新峰出现,O和H元素含量减少,表明成功发生酯化反应,表面粗糙,结晶度为42.54%,失重速率最大的温度由改性前的310.1℃提高到352.1℃,疏水角由改性前的0°提高到97.2°。相比RCS,ECS的吸油倍率有明显的提高,在重复使用9次之后,ECS对不同油品的吸油倍率均能保持70%以上。本文为废弃玉米秸秆资源化利用和含油废水的处理提供一种方法。
中图分类号:
赵凯月, 朱春山, 张宾朋, 赵美箐, 何昱铤, 王明锐. 酯化改性玉米秸秆吸油材料的制备与性能[J]. 化工进展, 2024, 43(11): 6483-6492.
ZHAO Kaiyue, ZHU Chunshan, ZHANG Binpeng, ZHAO Meijing, HE Yuting, WANG Mingrui. Preparation and oil absorption properties of oil-material for corn straw by esterification modification[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6483-6492.
水平 | 甲酸质量分数 (A)/% | 固液体积比(B) | 微波功率 (C)/W | 反应温度 (D)/℃ |
---|---|---|---|---|
-1 | 5 | 1∶35 | 300 | 90 |
0 | 7 | 1∶40 | 400 | 100 |
1 | 9 | 1∶45 | 500 | 110 |
表1 响应面实验因素水平设计
水平 | 甲酸质量分数 (A)/% | 固液体积比(B) | 微波功率 (C)/W | 反应温度 (D)/℃ |
---|---|---|---|---|
-1 | 5 | 1∶35 | 300 | 90 |
0 | 7 | 1∶40 | 400 | 100 |
1 | 9 | 1∶45 | 500 | 110 |
实验号 | A | B | C | D | Y/g·g-1 |
---|---|---|---|---|---|
1 | 0 | 1 | 0 | -1 | 20.48 |
2 | -1 | 1 | 0 | 0 | 19.08 |
3 | 1 | 0 | 0 | -1 | 21.65 |
4 | -1 | 0 | 0 | -1 | 17.37 |
5 | -1 | 0 | 0 | 1 | 22.59 |
6 | 0 | 0 | 0 | 0 | 25.73 |
7 | 0 | 1 | -1 | 0 | 20.28 |
8 | 1 | 0 | 0 | 1 | 20.25 |
9 | 1 | -1 | 0 | 0 | 18.20 |
10 | 0 | 0 | 1 | 1 | 22.70 |
11 | 1 | 0 | 1 | 0 | 23.17 |
12 | 0 | 0 | 0 | 0 | 25.56 |
13 | 0 | -1 | 0 | 1 | 21.58 |
14 | -1 | -1 | 0 | 0 | 17.06 |
15 | 0 | -1 | -1 | 0 | 18.30 |
16 | 0 | 0 | 0 | 0 | 24.92 |
17 | 0 | 0 | 1 | -1 | 21.37 |
18 | 1 | 0 | -1 | 0 | 20.13 |
19 | 0 | 0 | -1 | -1 | 21.05 |
20 | 0 | -1 | 0 | -1 | 17.28 |
21 | 0 | -1 | 1 | 0 | 19.61 |
22 | 0 | 1 | 1 | 0 | 20.62 |
23 | 0 | 0 | 0 | 0 | 26.11 |
24 | 0 | 0 | -1 | 1 | 23.54 |
25 | 1 | 1 | 0 | 0 | 19.88 |
26 | 0 | 1 | 0 | 1 | 20.47 |
27 | -1 | 0 | 1 | 0 | 21.52 |
28 | -1 | 0 | -1 | 0 | 19.90 |
29 | 0 | 0 | 0 | 0 | 25.85 |
表2 响应面实验设计与结果
实验号 | A | B | C | D | Y/g·g-1 |
---|---|---|---|---|---|
1 | 0 | 1 | 0 | -1 | 20.48 |
2 | -1 | 1 | 0 | 0 | 19.08 |
3 | 1 | 0 | 0 | -1 | 21.65 |
4 | -1 | 0 | 0 | -1 | 17.37 |
5 | -1 | 0 | 0 | 1 | 22.59 |
6 | 0 | 0 | 0 | 0 | 25.73 |
7 | 0 | 1 | -1 | 0 | 20.28 |
8 | 1 | 0 | 0 | 1 | 20.25 |
9 | 1 | -1 | 0 | 0 | 18.20 |
10 | 0 | 0 | 1 | 1 | 22.70 |
11 | 1 | 0 | 1 | 0 | 23.17 |
12 | 0 | 0 | 0 | 0 | 25.56 |
13 | 0 | -1 | 0 | 1 | 21.58 |
14 | -1 | -1 | 0 | 0 | 17.06 |
15 | 0 | -1 | -1 | 0 | 18.30 |
16 | 0 | 0 | 0 | 0 | 24.92 |
17 | 0 | 0 | 1 | -1 | 21.37 |
18 | 1 | 0 | -1 | 0 | 20.13 |
19 | 0 | 0 | -1 | -1 | 21.05 |
20 | 0 | -1 | 0 | -1 | 17.28 |
21 | 0 | -1 | 1 | 0 | 19.61 |
22 | 0 | 1 | 1 | 0 | 20.62 |
23 | 0 | 0 | 0 | 0 | 26.11 |
24 | 0 | 0 | -1 | 1 | 23.54 |
25 | 1 | 1 | 0 | 0 | 19.88 |
26 | 0 | 1 | 0 | 1 | 20.47 |
27 | -1 | 0 | 1 | 0 | 21.52 |
28 | -1 | 0 | -1 | 0 | 19.90 |
29 | 0 | 0 | 0 | 0 | 25.85 |
来源 | 平方和 | 自由度 | 均值 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 186.91 | 14 | 13.35 | 34.10 | <0.0001 | ** |
A | 2.76 | 1 | 2.76 | 7.06 | 0.0188 | * |
B | 6.42 | 1 | 6.42 | 16.41 | 0.0012 | ** |
C | 2.79 | 1 | 2.79 | 7.13 | 0.0183 | * |
D | 11.86 | 1 | 11.86 | 30.29 | <0.0001 | ** |
AB | 0.0289 | 1 | 0.0289 | 0.0738 | 0.7898 | — |
AC | 0.5041 | 1 | 0.5041 | 1.29 | 0.2756 | — |
AD | 10.96 | 1 | 10.96 | 27.98 | 0.0001 | ** |
BC | 0.2352 | 1 | 0.2352 | 0.6007 | 0.4512 | — |
BD | 4.64 | 1 | 4.64 | 11.86 | 0.0040 | ** |
CD | 0.3364 | 1 | 0.3364 | 0.8591 | 0.3697 | — |
A² | 60.49 | 1 | 60.49 | 154.47 | <0.0001 | ** |
B² | 106.32 | 1 | 106.32 | 271.54 | <0.0001 | ** |
C² | 17.23 | 1 | 17.23 | 44.01 | <0.0001 | ** |
D² | 22.50 | 1 | 22.50 | 57.46 | <0.0001 | ** |
残值 | 5.48 | 14 | 0.3916 | — | — | — |
失拟 | 4.68 | 10 | 0.4684 | 2.35 | 0.2130 | 不显著 |
纯差 | 0.7977 | 4 | 0.1994 | — | — | — |
总和 | 192.39 | 28 | — | — | — | — |
表3 回归模型的方差分析
来源 | 平方和 | 自由度 | 均值 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 186.91 | 14 | 13.35 | 34.10 | <0.0001 | ** |
A | 2.76 | 1 | 2.76 | 7.06 | 0.0188 | * |
B | 6.42 | 1 | 6.42 | 16.41 | 0.0012 | ** |
C | 2.79 | 1 | 2.79 | 7.13 | 0.0183 | * |
D | 11.86 | 1 | 11.86 | 30.29 | <0.0001 | ** |
AB | 0.0289 | 1 | 0.0289 | 0.0738 | 0.7898 | — |
AC | 0.5041 | 1 | 0.5041 | 1.29 | 0.2756 | — |
AD | 10.96 | 1 | 10.96 | 27.98 | 0.0001 | ** |
BC | 0.2352 | 1 | 0.2352 | 0.6007 | 0.4512 | — |
BD | 4.64 | 1 | 4.64 | 11.86 | 0.0040 | ** |
CD | 0.3364 | 1 | 0.3364 | 0.8591 | 0.3697 | — |
A² | 60.49 | 1 | 60.49 | 154.47 | <0.0001 | ** |
B² | 106.32 | 1 | 106.32 | 271.54 | <0.0001 | ** |
C² | 17.23 | 1 | 17.23 | 44.01 | <0.0001 | ** |
D² | 22.50 | 1 | 22.50 | 57.46 | <0.0001 | ** |
残值 | 5.48 | 14 | 0.3916 | — | — | — |
失拟 | 4.68 | 10 | 0.4684 | 2.35 | 0.2130 | 不显著 |
纯差 | 0.7977 | 4 | 0.1994 | — | — | — |
总和 | 192.39 | 28 | — | — | — | — |
实验次数 | 甲酸质量分数/% | 固液体积比 | 微波功率/W | 反应温度/℃ | 反应时间/min | 吸油倍率/g·g-1 |
---|---|---|---|---|---|---|
1 | 7 | 1∶40 | 400 | 100 | 20 | 25.16 |
2 | 7 | 1∶40 | 400 | 100 | 20 | 25.53 |
3 | 7 | 1∶40 | 400 | 100 | 20 | 25.72 |
平均 | — | — | — | — | — | 25.47 |
表4 最佳实验条件及结果
实验次数 | 甲酸质量分数/% | 固液体积比 | 微波功率/W | 反应温度/℃ | 反应时间/min | 吸油倍率/g·g-1 |
---|---|---|---|---|---|---|
1 | 7 | 1∶40 | 400 | 100 | 20 | 25.16 |
2 | 7 | 1∶40 | 400 | 100 | 20 | 25.53 |
3 | 7 | 1∶40 | 400 | 100 | 20 | 25.72 |
平均 | — | — | — | — | — | 25.47 |
样品 | C/% | H/% | O/% | N/% |
---|---|---|---|---|
PCS | 42.923 | 6.248 | 47.503 | 0 |
ECS | 43.465 | 6.217 | 46.081 | 0 |
表5 PCS、ECS元素质量分数分析对比
样品 | C/% | H/% | O/% | N/% |
---|---|---|---|---|
PCS | 42.923 | 6.248 | 47.503 | 0 |
ECS | 43.465 | 6.217 | 46.081 | 0 |
吸油材料以及改性方法 | 吸油倍率/g·g-1 | 参考文献 |
---|---|---|
玉米秸秆接枝丙烯酸丁酯改性 | 3.60~5.30 | [ |
玉米秸秆接枝甲基丙烯酸甲酯以及接枝苯乙烯和甲基丙烯酸甲酯的混合物改性 | 13.57~18.61 | [ |
玉米秸秆表面沉积SiO2/ZnO复合粒子改性 | 15.07~22.50 | [ |
玉米秸秆表面负载(十六氟-1,1,2,2-十四烷基)三甲氧基硅烷修饰的SiO2颗粒 | 13.50~27.80 | [ |
玉米秸秆为原料,二氧化硅及乙烯基三乙氧基硅烷为表面改性剂 | 5.42~6.31 | [ |
玉米秸秆表面沉积空心球形氧化锌粒子 | 20.40 | [ |
玉米秸秆为原料,辛基三甲氧基硅烷为改性剂 | 1.77~2.06 | [ |
在玉米秸秆表面生长聚硅氧烷纳米丝 | 0.58~1.81 | [ |
玉米秸秆为原料,浓硫酸为催化剂,乙酸酐酯化改性 | 9.03 | [ |
本文制备的吸油材料 | 17.06~33.68 | — |
表6 与其他吸油材料吸油倍率的比较
吸油材料以及改性方法 | 吸油倍率/g·g-1 | 参考文献 |
---|---|---|
玉米秸秆接枝丙烯酸丁酯改性 | 3.60~5.30 | [ |
玉米秸秆接枝甲基丙烯酸甲酯以及接枝苯乙烯和甲基丙烯酸甲酯的混合物改性 | 13.57~18.61 | [ |
玉米秸秆表面沉积SiO2/ZnO复合粒子改性 | 15.07~22.50 | [ |
玉米秸秆表面负载(十六氟-1,1,2,2-十四烷基)三甲氧基硅烷修饰的SiO2颗粒 | 13.50~27.80 | [ |
玉米秸秆为原料,二氧化硅及乙烯基三乙氧基硅烷为表面改性剂 | 5.42~6.31 | [ |
玉米秸秆表面沉积空心球形氧化锌粒子 | 20.40 | [ |
玉米秸秆为原料,辛基三甲氧基硅烷为改性剂 | 1.77~2.06 | [ |
在玉米秸秆表面生长聚硅氧烷纳米丝 | 0.58~1.81 | [ |
玉米秸秆为原料,浓硫酸为催化剂,乙酸酐酯化改性 | 9.03 | [ |
本文制备的吸油材料 | 17.06~33.68 | — |
1 | 鞠春红. 含油废水常用的处理方法及超疏水材料的应用[J]. 黑龙江科学, 2023, 14(8): 128-129, 149. |
JU Chunhong. Application of super-hydrophobic material and the treatment of oily wastewater[J]. Heilongjiang Science, 2023, 14(8): 128-129, 149. | |
2 | 赵诗琳, 孟范平, 林雨霏, 等. 二甲苯吸附剂及其在泄漏事故水域的适用性评述[J]. 化工进展, 2019, 38(6): 2813-2824. |
ZHAO Shilin, MENG Fanping, LIN Yufei, et al. Sorbents for seprating xylene and their applicability in waters after the accidental spills: A review[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2813-2824. | |
3 | 叶泽权, 吴青芸, 顾林. 纤维素基油水分离材料研究进展[J]. 化工进展, 2022, 41(6): 3038-3050. |
YE Zequan, WU Qingyun, GU Lin. Recent progress in cellulose-based materials for oil-water separation[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3038-3050. | |
4 | 李小菊, 武芸, 李惠成, 等. 酯化改性葵花秸秆吸油性能研究[J]. 当代化工, 2023, 52(4): 794-800. |
LI Xiaoju, WU Yun, LI Huicheng, et al. Study on oil absorption performance of esterified modified sunflower straw[J]. Contemporary Chemical Industry, 2023, 52(4): 794-800. | |
5 | 王磊, 刘昌见. 水稻秸秆水热处理-酯交换改性制备吸油材料[J]. 化工进展, 2017, 36(5): 1811-1817. |
WANG Lei, LIU Changjian. Hydrothermal treatment and transesterification modification of rice straw for oil spill absorption material[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1811-1817. | |
6 | 李亚婧, 孙晓锋, 王广征, 等. 秸秆的改性及吸油能力[J]. 化工进展, 2012, 31(8): 1847-1851. |
LI Yajing, SUN Xiaofeng, WANG Guangzheng, et al. Modification of straw and its oil absorbency[J]. Chemical Industry and Engineering Progress, 2012, 31(8): 1847-1851. | |
7 | TANG M X, ZHANG R, PU Y W. Wheat straw modified with palmitic acid as an efficient oil spill adsorbent[J]. Fibers and Polymers, 2018, 19(5): 949-955. |
8 | 王帅, 杨晨曦. 疏水/亲油改性柚子皮纤维的制备及其性能研究[J]. 应用化工, 2019, 48(6): 1321-1325. |
WANG Shuai, YANG Chenxi. Preparation and properties of hydrophobic/lipophilic modified grapefruit fiber[J]. Applied Chemical Industry, 2019, 48(6): 1321-1325. | |
9 | 王旭, 王晓丽, 彭世涛, 等. 香蕉果皮酯化改性制备吸油材料[J]. 化工新型材料, 2020, 48(1): 257-261. |
WANG Xu, WANG Xiaoli, PENG Shitao, et al. Preparation of oil-absorbing material by esterification of banana peel[J]. New Chemical Materials, 2020, 48(1): 257-261. | |
10 | 王艳敏, 丁文明, 蔡静. 改性木屑对海上溢油的吸附[J]. 环境工程学报, 2017, 11(5): 2705-2710. |
WANG Yanmin, DING Wenming, CAI Jing. Adsorption of oil spill by modified sawdust[J]. Chinese Journal of Environmental Engineering, 2017, 11(5): 2705-2710. | |
11 | 闫红芹, 郑文瑞, 张桂玉, 等. 疏水/亲油丝瓜络制备及在油水分离中的应用[J]. 化工进展, 2021, 40(5): 2893-2899. |
YAN Hongqin, ZHENG Wenrui, ZHANG Guiyu, et al. Preparation of hydrophobic/oleophilic luffa and its application in oil-water separation[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2893-2899. | |
12 | 高文中, 张佳, 付存亭, 等. 玉米秸秆的水热酸处理工艺技术研究[J]. 化工设计通讯, 2019, 45(8): 80-81. |
GAO Wenzhong, ZHANG Jia, FU Cunting, et al. Study on hydrothermal acid treatment of corn stover[J]. Chemical Engineering Design Communications, 2019, 45(8): 80-81. | |
13 | 葛秀, 谭凤芝, 刘兆丽, 等. 秸秆接枝丙烯酸丁酯制备吸油树脂[J]. 大连工业大学学报, 2012, 31(2): 132-135. |
GE Xiu, TAN Fengzhi, LIU Zhaoli, et al. Synthesis of oil-absorption resin with corn straw graft butyl acrylate[J]. Journal of Dalian Polytechnic University, 2012, 31(2): 132-135. | |
14 | 陈鹤男. 玉米秸秆吸油材料的制备与研究[D]. 大连: 大连海洋大学, 2019. |
CHEN Henan. Preparation and research of oil absorbing material of corn straw[D]. Dalian: Dalian Ocean University, 2019. | |
15 | TAN X F, WANG H-M D, ZANG D L, et al. Superhydrophobic/superoleophilic corn straw as an eco-friendly oil sorbent for the removal of spilled oil[J]. Clean Technologies and Environmental Policy, 2021, 23(1): 145-152. |
16 | XU Y, YANG H Y, ZANG D L, et al. Preparation of a new superhydrophobic/superoleophilic corn straw fiber used as an oil absorbent for selective absorption of oil from water[J]. Bioresources and Bioprocessing, 2018, 5(1): 1-11. |
17 | 任俊鹏, 汤婷, 董翠鸽, 等. 表面硅烷化改性秸秆吸油材料的制备及性能[J]. 环境化学, 2021, 40(7): 2246-2254. |
REN Junpeng, TANG Ting, DONG Cuige, et al. Preparation and properties of surface silanized modified corn stalkas nature oil sorbents[J]. Environmental Chemistry, 2021, 40(7): 2246-2254. | |
18 | ZANG D L, ZHANG M, LIU F, et al. Superhydrophobic/superoleophilic corn straw fibers as effective oil sorbents for the recovery of spilled oil[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(9): 2449-2456. |
19 | SHI Y L, FENG X J, YANG R H. Preparation of recyclable corn straw fiber as oil absorbent via a one-step direct modification[J]. Materials Research Express, 2021, 8(1): 015506. |
20 | LIU T. Direct conversion of rod-shaped corn straw to superhydrophobic absorbent by hydroxyl-driven silylation for selective removal of organic solvents and oils[J]. Journal of the Iranian Chemical Society, 2023, 20(10): 2621-2629. |
21 | PENG D, OUYANG F, LIANG X J, et al. Sorption of crude oil by enzyme-modified corn stalk vs. chemically treated corn stalk[J]. Journal of Molecular Liquids, 2018, 255: 324-332. |
22 | WANG Z, TIAN T, XU K, et al. Removal of antimony(Ⅲ) by magnetic MIL-101(Cr)-NH2 loaded with SiO2: Optimization based on response surface methodology and adsorption properties[J]. Chemical Papers, 2022, 76(5): 2733-2745. |
23 | CELLI G B, GHANEM A, S-L BROOKS M. Optimized encapsulation of anthocyanin-rich extract from haskap berries (Lonicera caerulea L.) in calcium-alginate microparticles[J]. Journal of Berry Research, 2016, 6(1): 1-11. |
24 | 汤健, 毕明, 陈长洁, 等. 超疏水棕榈生物质材料的研发[J]. 现代丝绸科学与技术, 2019, 34(1): 12-15, 34. |
TANG Jian, BI Ming, CHEN Changjie, et al. Research and development of super hydrophobic palm biomass materials[J]. Modern Silk Science & Technology, 2019, 34(1): 12-15, 34. | |
25 | 唐明晓, 吕二盟, 张睿, 等. 常温下乙酰化小麦秸秆纤维制备高效溢油吸附剂的研究[J]. 安徽农业科学, 2018, 46(8): 183-187. |
TANG Mingxiao, Ermeng LÜ, ZHANG Rui, et al. Preparation of an efficient oil-spill adsorbent by acetylating wheat straw cellulose at room temperature[J]. Journal of Anhui Agricultural Sciences, 2018, 46(8): 183-187. | |
26 | 姜思雨, 娄春华, 于晶晶, 等. 玉米秸秆乙酰化改性对环氧树脂性能的影响[J]. 工程塑料应用, 2023, 51(3): 129-135. |
JIANG Siyu, LOU Chunhua, YU Jingjing, et al. Effect of acetylation modification of corn straw on properties of epoxy resin[J]. Engineering Plastics Application, 2023, 51(3): 129-135. | |
27 | WARR L N, PERDRIAL J N, M-C LETT, et al. Clay mineral-enhanced bioremediation of marine oil pollution[J]. Applied Clay Science, 2009, 46(4): 337-345. |
28 | SETYAWAN H, FAUZIYAH M, TOMO H S S, et al. Fabrication of hydrophobic cellulose aerogels from renewable biomass coir fibers for oil spillage clean-up[J]. Journal of Polymers and the Environment, 2022, 30(12): 5228-5238. |
29 | 范廷玉, 李文洁, 彭丹, 等. 漆酶改性玉米秸秆髓的制备及其吸油特性[J]. 中国环境科学, 2020, 40(9): 3810-3820. |
FAN Tingyu, LI Wenjie, PENG Dan, et al. Preparation of laccase modified corn stover pith as oil sorbent and its properties[J]. China Environmental Science, 2020, 40(9): 3810-3820. | |
30 | 吕福全, 孟玉霞, 张元军, 等. 成型玉米秸秆气化的热重分析及动力学研究[J]. 当代化工研究, 2019(4): 147-150. |
LV Fuquan, MENG Yuxia, ZHANG Yuanjun, et al. Study on thermogravimetric analysis and kinetics during gasification of molding corn straw[J]. Modern Chemical Research, 2019(4): 147-150. | |
31 | PAWAR A A, KIM H. Sustainable, hydrophobic, and reusable paper waste aerogel as an effective and versatile oil absorbent[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107356. |
32 | WANG J J, ZHOU J L, ZHAI R, et al. A versatile platform of corn stalk-based membranes for high performance of oil/water separation[J]. Vacuum, 2023, 210: 111862. |
33 | 刘晓晖, 曹亚峰, 李沅, 等. 玉米秸秆基吸油材料的制备与表征[J]. 林产化学与工业, 2016, 36(5): 37-44. |
LIU Xiaohui, CAO Yafeng, LI Yuan, et al. Preparation and characterization of oil absorbent material derived from corn stalk[J]. Chemistry and Industry of Forest Products, 2016, 36(5): 37-44. |
[1] | 万震, 王绍庆, 李志合, 赵天生. HZSM-5分子筛催化木质素热解制芳烃研究进展[J]. 化工进展, 2024, 43(S1): 517-532. |
[2] | 陈慕华, 嵇震, 王芳, 黄凯健, 付博, 刘博, 刘绍忠, 朱新宝. 纤维素基共聚型聚羧酸减水剂的合成及其性能[J]. 化工进展, 2024, 43(S1): 564-570. |
[3] | 张浩, 刘世钰, 沈卫华, 方云进. Ca-ZSM-5催化尿素脱水制备单氰胺[J]. 化工进展, 2024, 43(S1): 365-373. |
[4] | 付维, 宁淑英, 蔡晨, 陈佳音, 周皞, 苏亚欣. Cu改性MIL-100(Fe)催化剂的SCR-C3H6脱硝特性[J]. 化工进展, 2024, 43(9): 4951-4960. |
[5] | 欧红香, 闵政, 薛洪来, 曹海珍, 毕海普, 王钧奇. 疏水改性纳米氧化镁对短氟碳链泡沫性能影响[J]. 化工进展, 2024, 43(9): 5177-5184. |
[6] | 孙燕, 谢晓阳, 冯倩颖, 郑璐, 何皎洁, 杨利伟, 白波. 基于单宁酸-铁(Ⅲ)改性正渗透膜制备及抗污染性能[J]. 化工进展, 2024, 43(9): 5309-5319. |
[7] | 梁国威, 金晶, 董波, 侯封校. 化学链燃烧中煤灰原位改性对钙基载氧体炭沉积的影响[J]. 化工进展, 2024, 43(8): 4253-4261. |
[8] | 付涛, 李立, 高莉宁, 朱富维, 曹炜烨, 陈华鑫. 水泥基硼掺杂石墨相氮化碳降解NO[J]. 化工进展, 2024, 43(8): 4403-4410. |
[9] | 龙涛, 周锋, 张伟, 吴泓, 王建, 陈霖. CO-CO2体系制备氘代甲醇催化剂的合成与改性[J]. 化工进展, 2024, 43(8): 4411-4420. |
[10] | 郑云香, 高艺伦, 李宴汝, 刘青霖, 张浩腾, 王向鹏. 氨基三乙酸酐改性多孔双网络水凝胶的制备及吸附性能[J]. 化工进展, 2024, 43(8): 4542-4549. |
[11] | 刘玉灿, 高中鲁, 徐心怡, 纪现国, 张岩, 孙洪伟, 王港. 钙改性水葫芦基生物炭吸附水中敌草隆的效能与机理[J]. 化工进展, 2024, 43(8): 4630-4641. |
[12] | 李妍, 吴芹, 陈康成, 张耀远, 史大昕, 黎汉生. 聚酰亚胺渗透汽化膜用于有机溶剂脱水的改性研究进展[J]. 化工进展, 2024, 43(6): 2915-2927. |
[13] | 何世坤, 张文豪, 冯君锋, 潘晖. 负载金属型固体酸催化木质纤维生物质定向转化为乙酰丙酸甲酯[J]. 化工进展, 2024, 43(6): 3042-3050. |
[14] | 李莹莹, 刘安, 姜乐妍, 李晖, 陈春钰, 居殿春. 过渡金属硫化物Co9S8的制备及电化学性能研究进展[J]. 化工进展, 2024, 43(6): 3114-3127. |
[15] | 龚雪梅, 蒋军, 王超, 梅长彤. 纳米纤维素疏水改性及其功能化应用研究进展[J]. 化工进展, 2024, 43(6): 3187-3198. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |