化工进展 ›› 2023, Vol. 42 ›› Issue (12): 6498-6506.DOI: 10.16085/j.issn.1000-6613.2023-0046
• 生物与医药化工 • 上一篇
收稿日期:
2023-01-10
修回日期:
2023-02-20
出版日期:
2023-12-25
发布日期:
2024-01-08
通讯作者:
刘铮
作者简介:
房晓宇(1997—),女,硕士研究生,研究方向为土壤生物修复。E-mail:fangxy20@mails.tsinghua.edu.cn。
FANG Xiaoyu(), LU Diannan, LIU Zheng()
Received:
2023-01-10
Revised:
2023-02-20
Online:
2023-12-25
Published:
2024-01-08
Contact:
LIU Zheng
摘要:
人类生产和生活中对于污染物的不当处理会导致土壤污染,威胁生态安全、粮食安全和可持续发展。土壤生物修复利用微生物来降解土壤中的有机污染物、转化重金属污染物价态或者降低其生物可利用度而降低其危害。伴随现代生物技术的发展,土壤生物修复技术被日益广泛地应用于污染耕地和污染工业场地的修复。本文从污染物质的转化与利用角度,概述了土壤污染物的主要类型及其所适用的生物修复技术及其进展。重点综述了生物修复菌株的筛选、土壤微生态分析、生物修复过程强化三方面的最新进展,介绍了生物修复技术在加油站、废弃化工厂的生物修复及秸秆还田中的工程实施案例,分析了土壤生物修复技术应用中存在的问题,如土壤修复效果评估和降解菌剂性能强化等,讨论了土壤生物修复技术的研究方向和应用前景。
中图分类号:
房晓宇, 卢滇楠, 刘铮. 污染土壤生物修复技术的进展与工程应用现状[J]. 化工进展, 2023, 42(12): 6498-6506.
FANG Xiaoyu, LU Diannan, LIU Zheng. Recent advancements and applications of soil bioremediation techniques[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6498-6506.
污染物类型 | 典型污染物 | 特点 | 生物修复技术 |
---|---|---|---|
无机污染物 | 重金属、微量元素、放射性核素、石棉等 | 不可降解,可溶,生物利用度低 | 生物钝化、植物挥发、生物浸出 |
有机污染物 | 农药、酚类化合物、药物和个人护理品等 | 可降解,可溶,有生物毒性,需筛选生物 | 微生物降解、生物通风、根际降解 |
石油烃、多环芳烃、硝基苯类、有机卤化物等 | 可降解,不可溶 | 微生物降解、生物通风、生物堆 | |
废弃生物质 | 农作物秸秆、林产废弃物、畜禽粪便等 | 可降解 | 微生物降解、生物堆、生物通风、根际降解 |
表1 土壤污染物的类型和生物修复技术
污染物类型 | 典型污染物 | 特点 | 生物修复技术 |
---|---|---|---|
无机污染物 | 重金属、微量元素、放射性核素、石棉等 | 不可降解,可溶,生物利用度低 | 生物钝化、植物挥发、生物浸出 |
有机污染物 | 农药、酚类化合物、药物和个人护理品等 | 可降解,可溶,有生物毒性,需筛选生物 | 微生物降解、生物通风、根际降解 |
石油烃、多环芳烃、硝基苯类、有机卤化物等 | 可降解,不可溶 | 微生物降解、生物通风、生物堆 | |
废弃生物质 | 农作物秸秆、林产废弃物、畜禽粪便等 | 可降解 | 微生物降解、生物堆、生物通风、根际降解 |
功能微生物 | 处理污染物 | 作用机制 | 参考文献 |
---|---|---|---|
HB-4 | 镉 | 表面分泌EPS吸附钝化重金属 | [ |
E. cloacae TU | 镉 | 表面化学基团钝化重金属 | [ |
硝基还原假单胞菌 | 镉 | 菌体表面生物矿化重金属 | [ |
R. sphaeroids SC01 | 铬 | 将硫酸盐转化为硫化物,形成硫化铬等复合物钝化金属 | [ |
Citrobacer | 镉 | 分解2-磷酸甘油,形成CdHPO4沉淀钝化金属 | [ |
P. fluorescens Q2-87 | 锌、镉 | 合成金属硫蛋白在细胞内部钝化重金属 | [ |
CRB5 | 铬 | 分泌铬酸还原酶降低重金属毒性 | [ |
R. metallidurans CH34 | 硒 | 周质或细胞质还原亚硒酸盐并在胞内沉积 | [ |
表2 生物钝化土壤中的重金属污染物案例
功能微生物 | 处理污染物 | 作用机制 | 参考文献 |
---|---|---|---|
HB-4 | 镉 | 表面分泌EPS吸附钝化重金属 | [ |
E. cloacae TU | 镉 | 表面化学基团钝化重金属 | [ |
硝基还原假单胞菌 | 镉 | 菌体表面生物矿化重金属 | [ |
R. sphaeroids SC01 | 铬 | 将硫酸盐转化为硫化物,形成硫化铬等复合物钝化金属 | [ |
Citrobacer | 镉 | 分解2-磷酸甘油,形成CdHPO4沉淀钝化金属 | [ |
P. fluorescens Q2-87 | 锌、镉 | 合成金属硫蛋白在细胞内部钝化重金属 | [ |
CRB5 | 铬 | 分泌铬酸还原酶降低重金属毒性 | [ |
R. metallidurans CH34 | 硒 | 周质或细胞质还原亚硒酸盐并在胞内沉积 | [ |
处理污染物 | 功能微生物 | 功能酶系 | 作用机制 | 参考文献 |
---|---|---|---|---|
石油烃 | 假单胞菌、阴沟肠杆菌、银汉小克霉菌 | 单/双加氧酶、脱氢酶 | 单/双加氧酶和脱氢酶通过单末端氧化、双末端氧化、次末端氧化、ω-氧化和β-氧化降解链烷烃,不同加氧酶将环烷烃依次氧化为环醇、环酮,开环后再进入三羧酸循环 | [ |
多环芳烃 | 假单胞菌、芽孢杆菌、白腐真菌 | 单/双加氧酶、细胞色素P450酶、木质素降解酶系 | 单/双加氧酶和细胞色素P450酶将多环芳烃氧化为二氢二醇化合物、木质素降解酶系将多环芳烃氧化为醌类物质 | [ |
炸药(硝基苯类化合物) | 假单胞菌、红平红球菌、黄孢原毛平革菌 | 硝基还原酶、加氧酶 | 硝基还原酶将苯环上硝基还原为氨基或对苯环加氢还原,直接脱去硝基,释放亚硝酸根离子 | [ |
多氯联苯 | 产碱杆菌、无色杆菌、红球菌 | 联苯双加氧酶、脱卤酶 | 联苯双加氧酶氧化多氯联苯的苯环上的2,3位生成顺二氢二醇产物,脱卤酶在厌氧条件下对多氯联苯进行还原脱氯 | [ |
有机氯农药 | 克雷白氏杆菌菌、芽孢杆菌、白腐真菌 | 脱卤酶、脱氯化氢酶、谷胱甘肽转移酶 | 脱卤酶结合有机氯农药催化C—Cl键水解,脱氯化氢酶从底物上脱去氯化氢并生成碳碳双键,谷胱甘肽转移酶催化有机氯农药与谷胱甘肽结合脱氯 | [ |
有机磷农药 | 芽孢杆菌、黄杆菌曲霉、放线菌 | 有机磷水解酶、细胞色素P450酶、糖基转移酶 | 有机磷水解酶裂解P—O键、P—C键、P—S键,细胞色素P450酶对有机磷农药进行羟基化或N-脱烷基化反应,糖基转移酶将有机物与糖氨基酸或谷胱甘肽结合 | [ |
表3 生物降解有机污染物典型案例
处理污染物 | 功能微生物 | 功能酶系 | 作用机制 | 参考文献 |
---|---|---|---|---|
石油烃 | 假单胞菌、阴沟肠杆菌、银汉小克霉菌 | 单/双加氧酶、脱氢酶 | 单/双加氧酶和脱氢酶通过单末端氧化、双末端氧化、次末端氧化、ω-氧化和β-氧化降解链烷烃,不同加氧酶将环烷烃依次氧化为环醇、环酮,开环后再进入三羧酸循环 | [ |
多环芳烃 | 假单胞菌、芽孢杆菌、白腐真菌 | 单/双加氧酶、细胞色素P450酶、木质素降解酶系 | 单/双加氧酶和细胞色素P450酶将多环芳烃氧化为二氢二醇化合物、木质素降解酶系将多环芳烃氧化为醌类物质 | [ |
炸药(硝基苯类化合物) | 假单胞菌、红平红球菌、黄孢原毛平革菌 | 硝基还原酶、加氧酶 | 硝基还原酶将苯环上硝基还原为氨基或对苯环加氢还原,直接脱去硝基,释放亚硝酸根离子 | [ |
多氯联苯 | 产碱杆菌、无色杆菌、红球菌 | 联苯双加氧酶、脱卤酶 | 联苯双加氧酶氧化多氯联苯的苯环上的2,3位生成顺二氢二醇产物,脱卤酶在厌氧条件下对多氯联苯进行还原脱氯 | [ |
有机氯农药 | 克雷白氏杆菌菌、芽孢杆菌、白腐真菌 | 脱卤酶、脱氯化氢酶、谷胱甘肽转移酶 | 脱卤酶结合有机氯农药催化C—Cl键水解,脱氯化氢酶从底物上脱去氯化氢并生成碳碳双键,谷胱甘肽转移酶催化有机氯农药与谷胱甘肽结合脱氯 | [ |
有机磷农药 | 芽孢杆菌、黄杆菌曲霉、放线菌 | 有机磷水解酶、细胞色素P450酶、糖基转移酶 | 有机磷水解酶裂解P—O键、P—C键、P—S键,细胞色素P450酶对有机磷农药进行羟基化或N-脱烷基化反应,糖基转移酶将有机物与糖氨基酸或谷胱甘肽结合 | [ |
技术 | 污染物 | 作用机制 | 应用案例 |
---|---|---|---|
曝气-生物联合修复 | 有机卤化物、挥发性有机物 | 增强包气带、含水层土壤的生物通风,强化好氧生物降解 | [ |
表面活性剂-生物联合修复 | 石油烃 | 提高污染物的生物可利用度,改变微生物表面的疏水性 | [ |
生物炭-生物联合修复 | 重金属、石油烃 | 富集污染物,中和土壤pH,提供营养支持微生物生长 | [ |
秸秆-生物联合修复 | 重金属、石油烃 | 提高土壤通透性,吸附石油污染物,转化后的腐殖质钝化重金属离子 | [ |
化学氧化-生物联合修复 | 石油烃、多环芳烃 | 化学预氧化大分子有机污染物,产生电子受体和生物可利用的有机小分子 | [ |
电动-生物联合修复 | 石油烃、多环芳烃 | 电场强化污染物、电子受体、营养物质和微生物的迁移,增强传质 | [ |
表4 生物修复过程强化技术
技术 | 污染物 | 作用机制 | 应用案例 |
---|---|---|---|
曝气-生物联合修复 | 有机卤化物、挥发性有机物 | 增强包气带、含水层土壤的生物通风,强化好氧生物降解 | [ |
表面活性剂-生物联合修复 | 石油烃 | 提高污染物的生物可利用度,改变微生物表面的疏水性 | [ |
生物炭-生物联合修复 | 重金属、石油烃 | 富集污染物,中和土壤pH,提供营养支持微生物生长 | [ |
秸秆-生物联合修复 | 重金属、石油烃 | 提高土壤通透性,吸附石油污染物,转化后的腐殖质钝化重金属离子 | [ |
化学氧化-生物联合修复 | 石油烃、多环芳烃 | 化学预氧化大分子有机污染物,产生电子受体和生物可利用的有机小分子 | [ |
电动-生物联合修复 | 石油烃、多环芳烃 | 电场强化污染物、电子受体、营养物质和微生物的迁移,增强传质 | [ |
1 | LI Tiankui, LIU Yi, LIN Sijie, et al. Soil pollution management in China: A brief introduction[J]. Sustainability, 2019, 11(3): 556. |
2 | ZENG Siyan, MA Jing, YANG Yongjun, et al. Spatial assessment of farmland soil pollution and its potential human health risks in China[J]. Science of the Total Environment, 2019, 687: 642-653. |
3 | HOU D Y, O'CONNOR D, IGALAVITHANA A D, et al. Metal contamination and bioremediation of agricultural soils for food safety and sustainability[J]. Nature Reviews Earth & Environment, 2020, 1(7): 366-381. |
4 | MEENAR M, HOWELL J P, Economic HACHADORIAN J., ecological, and equity dimensions of brownfield redevelopment plans for environmental justice communities in the USA[J]. Local Environment, 2019, 24(9): 901-915. |
5 | OLIVER M A. Soil and human health: A review[J]. European Journal of Soil Science, 1997, 48(4): 573-592. |
6 | LE QUÉRÉ C, ANDRES R J, BODEN T, et al. The global carbon budget 1959—2011[J]. Earth System Science Data, 2013, 5(1): 165-185. |
7 | 钱暑强, 刘铮. 污染土壤修复技术介绍[J]. 化工进展, 2000, 19(4): 10-12. |
QIAN Shuqiang, LIU Zheng. An overview of development in the soil-remediation techniques[J]. Chemical Industry and Engineering Progress, 2000, 19(4): 10-12. | |
8 | 刘志培, 刘双江. 我国污染土壤生物修复技术的发展及现状[J]. 生物工程学报, 2015, 31(6): 901-916. |
LIU Zhipei, LIU Shuangjiang. Development of bioremediation in China—A review[J]. Chinese Journal of Biotechnology, 2015, 31(6): 901-916. | |
9 | SWANNELL R P J, HEAD I M. Bioremediation comes of age[J]. Nature, 1994, 368(6470): 396-397. |
10 | 王立群, 罗磊, 马义兵, 等. 重金属污染土壤原位钝化修复研究进展[J]. 应用生态学报, 2009, 20(5): 1214-1222. |
WANG Liqun, LUO Lei, MA Yibing, et al. In situ immobilization remediation of heavy metals-contaminated soils: A review[J]. Chinese Journal of Applied Ecology, 2009, 20(5): 1214-1222. | |
11 | 顾继光, 周启星, 王新. 土壤重金属污染的治理途径及其研究进展[J]. 应用基础与工程科学学报, 2003, 11(2): 143-151. |
GU Jiguang, ZHOU Qixing, WANG Xin. Reused path of heavy metal pollution in soils and its research advance[J]. Journal of Basic Science and Engineering, 2003, 11(2): 143-151. | |
12 | TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. |
13 | 陈亚奎, 徐粲然, 朱启法, 等. 黏质沙雷氏菌HB-4吸附重金属镉的机制[J]. 化工学报, 2017, 68(4): 1574-1581. |
CHEN Yakui, XU Canran, ZHU Qifa, et al. Cadmium adsorption mechanism of Serratia marcescens HB-4[J]. CIESC Journal, 2017, 68(4): 1574-1581. | |
14 | XU Canran, HE Shengbao, LIU Yongmin, et al. Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU[J]. Chemosphere, 2017, 173: 622-629. |
15 | 喻涌泉, 黄魏魏, 董建江, 等. 硝基还原假单胞菌吸附重金属镉的机理研究[J]. 中国环境科学, 2017, 37(6): 2232-2238. |
YU Yongquan, HUANG Weiwei, DONG Jianjiang, et al. Study on the removal of Cd(Ⅱ) by Pseudomonas nitroreducens: Biosorption characteristics and mechanism[J]. China Environmental Science, 2017, 37(6): 2232-2238. | |
16 | SU Yanqiu, MIN Shuangnan, JIAN Xinyi, et al. Bioreduction mechanisms of high-concentration hexavalent chromium using sulfur salts by photosynthetic bacteria[J]. Chemosphere, 2023, 311(Pt 1): 136861. |
17 | MACASKIE L E, DEAN A C R, CHEETHAM A K, et al. Cadmium accumulation by a Citrobacter sp.: The chemical nature of the accumulated metal precipitate and its location on the bacterial cells[J]. Microbiology, 1987, 133(3): 539-544. |
18 | HABJANIČ J, MATHEW A, EBERL L, et al. Deciphering the enigmatic function of Pseudomonas metallothioneins[J]. Frontiers in Microbiology, 2020, 11: 1709. |
19 | MCLEAN J, BEVERIDGE T J. Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate[J]. Applied and Environmental Microbiology, 2001, 67(3): 1076-1084. |
20 | ROUX M, SARRET G, PIGNOT-PAINTRAND I, et al. Mobilization of selenite by Ralstonia metallidurans CH34[J]. Applied and Environmental Microbiology, 2001, 67(2): 769-773. |
21 | CHEN Xiaomeng, ZHAO Yue, ZHANG Chuang, et al. Speciation, toxicity mechanism and remediation ways of heavy metals during composting: A novel theoretical microbial remediation method is proposed[J]. Journal of Environmental Management, 2020, 272: 111109. |
22 | 徐磊辉, 黄巧云, 陈雯莉. 环境重金属污染的细菌修复与检测[J]. 应用与环境生物学报, 2004, 10(2): 256-262. |
XU Leihui, HUANG Qiaoyun, CHEN Wenli. Bacterial bioremediation and bio-detection of heavy metal-contaminated environments[J]. Chinese Journal of Applied and Environmental Biology, 2004, 10(2): 256-262. | |
23 | VAN ROY S, VANBROEKHOVEN K, DEJONGHE W, et al. Immobilization of heavy metals in the saturated zone by sorption and in situ bioprecipitation processes[J]. Hydrometallurgy, 2006, 83(1/2/3/4): 195-203. |
24 | 张玲, 王焕校. 镉胁迫下小麦根系分泌物的变化[J]. 生态学报, 2002, 22(4): 496-502. |
ZHANG Ling, WANG Huanxiao. Changes of root exudates to cadmium stress in wheat (Triticum aestivm L.)[J]. Acta Ecologica Sinica, 2002, 22(4): 496-502. | |
25 | 周际海, 袁颖红, 朱志保, 等. 土壤有机污染物生物修复技术研究进展[J]. 生态环境学报, 2015, 24(2): 343-351. |
ZHOU Jihai, YUAN Yinghong, ZHU Zhibao, et al. A review on bioremediation technologies of organic pollutants contaminated soils[J]. Ecology and Environmental Sciences, 2015, 24(2): 343-351. | |
26 | BRZESZCZ J, KASZYCKI P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: An undervalued strategy for metabolic diversity and flexibility[J]. Biodegradation, 2018, 29(4): 359-407. |
27 | ABBASIAN F, LOCKINGTON R, MALLAVARAPU M, et al. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria[J]. Applied Biochemistry and Biotechnology, 2015, 176(3): 670-699. |
28 | ZHAO Meiai, GU Hao, ZHANG Chuanjie, et al. Metabolism of insecticide diazinon by Cunninghamella elegans ATCC36112[J]. RSC Advances, 2020, 10(33): 19659-19668. |
29 | FUENTES S, MÉNDEZ V, AGUILA P, et al. Bioremediation of petroleum hydrocarbons: Catabolic genes, microbial communities, and applications[J]. Applied Microbiology and Biotechnology, 2014, 98(11): 4781-4794. |
30 | B-T OH, SARATH G, SHEA P J. TNT nitroreductase from a Pseudomonas aeruginosa strain isolated from TNT-contaminated soil[J]. Soil Biology and Biochemistry, 2001, 33(7/8): 875-881. |
31 | Thiau-Fu ANG, MAIANGWA J, SALLEH A B, et al. Dehalogenases: From improved performance to potential microbial dehalogenation applications[J]. Molecules, 2018, 23(5): 1100. |
32 | TIEN M, KIRK T K. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(8): 2280-2284. |
33 | BOUFERCHA O, MOREIRA I S, CASTRO P M L, et al. Actinobacteria isolated from wastewater treatment plants located in the east-north of Algeria able to degrade pesticides[J]. World Journal of Microbiology & Biotechnology, 2022, 38(6): 105. |
34 | LIU Yifan, CHEN Jing, LIU Zhonglin, et al. Anaerobic degradation of paraffins by thermophilic Actinobacteria under methanogenic conditions[J]. Environmental Science & Technology, 2020, 54(17): 10610-10620. |
35 | RENTZ J A, ALVAREZ P J J, SCHNOOR J L. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation[J]. Environmental Pollution, 2005, 136(3): 477-484. |
36 | CUNNINGHAM S D, BERTI W R, HUANG Jianwei W. Phytoremediation of contaminated soils[J]. Trends in Biotechnology, 1995, 13(9): 393-397. |
37 | REICHENAUER T G, GERMIDA J J. Phytoremediation of organic contaminants in soil and groundwater[J]. ChemSusChem, 2008, 1(8/9): 708-717. |
38 | 滕应, 骆永明, 李振高. 污染土壤的微生物修复原理与技术进展[J]. 土壤, 2007, 39(4): 497-502. |
TENG Ying, LUO Yongming, LI Zhengao. Principles and techniques of microbial remediation of polluted soils[J]. Soils, 2007, 39(4): 497-502. | |
39 | HUA Xiufu, WANG Jun, WU Zuojun, et al. A salt tolerant Enterobacter cloacae mutant for bioaugmentation of petroleum- and salt-contaminated soil[J]. Biochemical Engineering Journal, 2010, 49(2): 201-206. |
40 | 张晓庆, 王梓凡, 参木友, 等. 中国农作物秸秆产量及综合利用现状分析[J]. 中国农业大学学报, 2021, 26(9): 30-41. |
ZHANG Xiaoqing, WANG Zifan, Muyou CAN, et al. Analysis of yield and current comprehensive utilization of crop straws in China[J]. Journal of China Agricultural University, 2021, 26(9): 30-41. | |
41 | 王建华, 白韵如. 秸秆发酵饲料的研究[J]. 中国饲料, 1998(3): 36-37. |
WANG Jianhua, BAI Yunru. Study on straw fermented feed[J]. China Feed, 1998(3): 36-37. | |
42 | 薛林贵, 杨蕊琪, 马高高, 等. 秸秆的生物降解机理及其功能微生物菌群研究进展[J]. 生态科学, 2017, 36(3): 193-199. |
XUE Lingui, YANG Ruiqi, MA Gaogao, et al. Progress in research of straw biodegradation mechanisms and functional microbial flora[J]. Ecological Science, 2017, 36(3): 193-199. | |
43 | 张传富, 顾文杰, 彭科峰, 等. 微生物纤维素酶的研究现状[J]. 生物信息学, 2007, 5(1): 34-36. |
ZHANG Chuanfu, GU Wenjie, PENG Kefeng, et al. Present situation of research on microbial cellulase[J]. China Journal of Bioinformatics, 2007, 5(1): 34-36. | |
44 | Mansfield SHAWN D, ROGER Meder. Cellulose hydrolysis—The role of monocomponent cellulases in crystalline cellulose degradation[J]. Cellulose, 2003, 10: 159-169. |
45 | TIEN M, KIRK T K. Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium burds[J]. Science, 1983, 221(4611): 661-663. |
46 | 赵秀云, 赵昕宇, 杨津津, 等. 堆肥过程中木质素的降解机理及影响因素研究进展[J]. 环境工程, 2021, 39(6): 128-136. |
ZHAO Xiuyun, ZHAO Xinyu, YANG Jinjin, et al. Research progress on lignin degradation mechanism and influencing factors during composting[J]. Environmental Engineering, 2021, 39(6): 128-136. | |
47 | 付丹妮, 李晓桐, 徐粲然, 等. 秸秆降解菌株CKB的降解特性与机理[J]. 辽宁石油化工大学学报, 2019, 39(5): 13-20. |
FU Danni, LI Xiaotong, XU Canran, et al. Degradation characteristics and mechanism of Aspergillus niger CKB[J]. Journal of Liaoning Shihua University, 2019, 39(5): 13-20. | |
48 | CALDWELL D E, WOLFAARDT G, KORBER D, et al. Do bacterial communities transcend Darwinism?[M]// JONES J G. Advances in Microbial Ecology. Boston, MA: Springer, 1997: 105-191. |
49 | STACH J E M, BURNS R G. Enrichment versus biofilm culture: A functional and phylogenetic comparison of polycyclic aromatic hydrocarbon-degrading microbial communities[J]. Environmental Microbiology, 2002, 4(3): 169-182. |
50 | 史彬, 黄魏魏, 付丹妮, 等. 秸秆降解放线菌GC的筛选及其应用基础研究[J]. 微生物学杂志, 2018, 38(2): 43-49. |
SHI Bin, HUANG Weiwei, FU Danni, et al. Isolation, identification of straw-degrading Actinomyces GC and its application study[J]. Journal of Microbiology, 2018, 38(2): 43-49. | |
51 | LANG Zhe, QI Dan, DONG Jianjiang, et al. Isolation and characterization of a quinclorac-degrading Actinobacteria Streptomyces sp. strain AH-B and its implication on microecology in contaminated soil[J]. Chemosphere, 2018, 199: 210-217. |
52 | TANG Liwei, DONG Jianjiang, REN Liwei, et al. Biodegradation of chlorothalonil by Enterobacter cloacae TUAH-1[J]. International Biodeterioration & Biodegradation, 2017, 121: 122-130. |
53 | ZHANG Kun, XU Yuanyuan, HUA Xiufu, et al. An intensified degradation of phenanthrene with macroporous alginate-lignin beads immobilized Phanerochaete chrysosporium [J]. Biochemical Engineering Journal, 2008, 41(3): 251-257. |
54 | ZUZOLO D, GUARINO C, TARTAGLIA M, et al. Plant-soil-microbiota combination for the removal of total petroleum hydrocarbons (TPH): An in-field experiment[J]. Frontiers in Microbiology, 2020, 11: 621581. |
55 | 陈宇锟, 黎青华, 周景文, 等. 基于液滴微流控的产α-淀粉酶地衣芽孢杆菌高通量筛选[J]. 食品与发酵工业, 2021, 47(17): 41-46. |
CHEN Yukun, LI Qinghua, ZHOU Jingwen, et al. High-throughput screening of α-amylase-producing Bacillus licheniformis based on droplet microfluidic system[J]. Food and Fermentation Industries, 2021, 47(17): 41-46. | |
56 | CHEN Dongwei, LIU Shuangjiang, DU Wenbin. Chemotactic screening of imidazolinone-degrading bacteria by microfluidic SlipChip[J]. Journal of Hazardous Materials, 2019, 366: 512-519. |
57 | FANTROUSSI S EL, AGATHOS S N. Is bioaugmentation a feasible strategy for pollutant removal and site remediation?[J]. Current Opinion in Microbiology, 2005, 8(3): 268-275. |
58 | 石扬, 陈沅江. 我国污染土壤生物修复技术研究现状及发展展望[J]. 世界科技研究与发展, 2017, 39(1): 24-32. |
SHI Yang, CHEN Yuanjiang. Research status and development direction of contaminated soil bioremediation technology in China[J]. World Sci-Tech R & D, 2017, 39(1): 24-32. | |
59 | ZHANG Kai, WANG Sa, GUO Penghong, et al. Characteristics of organic carbon metabolism and bioremediation of petroleum-contaminated soil by a mesophilic aerobic biopile system[J]. Chemosphere, 2021, 264: 128521. |
60 | REN Hongyang, DENG Yuanpeng, MA Liang, et al. Enhanced biodegradation of oil-contaminated soil oil in shale gas exploitation by biochar immobilization[J]. Biodegradation, 2022, 33(6): 621-639. |
61 | 王冬梅, 陈丽华, 雒晓芳, 等. 鼠李糖脂与菌剂对原油污染土壤的联合修复[J]. 环境工程学报, 2014, 8(11): 5003-5009. |
WANG Dongmei, CHEN Lihua, LUO Xiaofang, et al. Combined remediation effects of rhamnolipid-microbial inoculant on petroleum contaminated soils[J]. Chinese Journal of Environmental Engineering, 2014, 8(11): 5003-5009. | |
62 | 张坤, 徐圆圆, 花秀夫, 等. 麦秸强化微生物降解石油烃及场地试验[J]. 环境科学, 2009, 30(1): 237-241. |
ZHANG Kun, XU Yuanyuan, HUA Xiufu, et al. Process fundamentals and field demonstration of wheat straw enhanced biodegradation of petroleum[J]. Environmental Science, 2009, 30(1): 237-241. | |
63 | LI Lu, ZHANG Zena, WANG Yuheng, et al. Efficient removal of heavily oil-contaminated soil using a combination of Fenton pre-oxidation with biostimulated iron and bioremediation[J]. Journal of Environmental Management, 2022, 308: 114590. |
64 | LI Fengmei, GUO Shuhai, WANG Sa, et al. Changes of microbial community and activity under different electric fields during electro-bioremediation of PAH-contaminated soil[J]. Chemosphere, 2020, 254: 126880. |
65 | DONNISON L M, GRIFFITH G S, HEDGER J, et al. Management influences on soil microbial communities and their function in botanically diverse haymeadows of northern England and Wales[J]. Soil Biology and Biochemistry, 2000, 32(2): 253-263. |
66 | 吴作军, 卢滇楠, 张敏莲, 等. 微生物分子生态学技术及其在石油污染土壤修复中的应用现状与展望[J]. 化工进展, 2010, 29(5): 789-795. |
WU Zuojun, LU Diannan, ZHANG Minlian, et al. Progress in applications of microbiological molecular ecology in bioremediation of petroleum contaminated soil[J]. Chemical Industry and Engineering Progress, 2010, 29(5): 789-795. | |
67 | 李莹, 吴兴杰, 贺治斌, 等. 宏转录组学在环境微生物生态学中的应用[J]. 中国环境科学, 2021, 41(9): 4341-4348. |
LI Ying, WU Xingjie, HE Zhibin, et al. Application of metatranscriptomics in environmental microbial ecology[J]. China Environmental Science, 2021, 41(9): 4341-4348. | |
68 | 张曦, 李锋, 刘婷婷, 等. 土壤宏蛋白质组学在土壤污染评价中的应用[J]. 应用生态学报, 2012, 23(10): 2923-2930. |
ZHANG Xi, LI Feng, LIU Tingting, et al. Applications of soil metaproteomics in soil pollution assessment: A review[J]. Chinese Journal of Applied Ecology, 2012, 23(10): 2923-2930. | |
69 | ZHOU Xinquan, HAO Yunyun, GU Baohua, et al. Microbial communities associated with methylmercury degradation in paddy soils[J]. Environmental Science & Technology, 2020, 54(13): 7952-7960. |
70 | CHEN Songcan, BUDHRAJA R, ADRIAN L, et al. Novel clades of soil biphenyl degraders revealed by integrating isotope probing, multi-omics, and single-cell analyses[J]. The ISME Journal, 2021, 15(12): 3508-3521. |
71 | LIU Shejiang, JIANG Bin, HUANG Guoqiang, et al. Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier[J]. Water Research, 2006, 40(18): 3401-3408. |
72 | 吴鸣, 吴剑锋, 林锦, 等. 地下油罐泄漏区污染源的自动识别[J]. 环境科学学报, 2013, 33(12): 3251-3259. |
WU Ming, WU Jianfeng, LIN Jin, et al. Automated identification of the unknown contaminant source in groundwater at a leaking underground storage tank site[J]. Acta Scientiae Circumstantiae, 2013, 33(12): 3251-3259. | |
73 | AZADPOUR-KEELEY A, KEELEY J W, RUSSELL H H, et al. Monitored natural attenuation of contaminants in the subsurface: Processes[J]. Groundwater Monitoring & Remediation, 2001, 21(2): 97-107. |
74 | 崔长征. 一种BTEX降解菌及其筛选方法和应用: CN112251378B[P]. 2022-09-09. |
CUI Changzheng. Benzene series degrading bacterium as well as screening method and application thereof: CN112251378B[P]. 2022-09-09. | |
75 | LI Chongshu, CUI Changzheng, ZHANG Jie, et al. Biodegradation of petroleum hydrocarbons based pollutants in contaminated soil by exogenous effective microorganisms and indigenous microbiome[J]. Ecotoxicology and Environmental Safety, 2023, 253: 114673. |
76 | 孙广东. 有机氯农药污染土壤生物学特性及降解效应研究[D]. 北京: 清华大学, 2015. |
SUN Guangdong. Biological characteristics and biodegradation of organochlorine pesticides in contaminated soils[D]. Beijing: Tsinghua University, 2015. | |
77 | DU Chenyu, ABDULLAH J J, GREENTHAM D, et al. Valorization of food waste into biofertiliser and its field application[J]. Journal of Cleaner Production, 2018, 187: 273-284. |
[1] | 马敬文, 牛佳钰, 李秀芬. 好氧堆肥腐熟的促进技术[J]. 化工进展, 2023, 42(5): 2744-2750. |
[2] | 潘云飞, 唐正, 彭欣怡, 高品. 石油烃污染土壤微生物修复技术研究现状及进展[J]. 化工进展, 2021, 40(8): 4562-4572. |
[3] | 唐垂云, 钟娟, 吕莹, 张明江, 孙娟, 刘兴宇. 土壤中铀污染修复技术研究进展[J]. 化工进展, 2021, 40(8): 4587-4599. |
[4] | 李薇, 王信粉, 时利香, 宋瑶, 张杰, 杜显元. 表面活性剂复配体系修复芘污染土壤实验[J]. 化工进展, 2021, 40(6): 3526-3535. |
[5] | 王晓峰, 陈晨, 宋瑶, 李春晓, 杜显元, 李薇. 槐糖脂-LAS-Na2SiO3复配修复石油污染土壤影响因素分析[J]. 化工进展, 2019, 38(06): 2933-2938. |
[6] | 刁潘1,刘静2,张永奎3, 刘瑾1,姚太平2. 阴离子/非离子表面活性剂体系洗涤含油污泥[J]. 化工进展, 2014, 33(10): 2753-2757. |
[7] | 张秀霞,刘永博,徐娜娜,白雪晶,孔甜甜,李进辉,张 腾. 固定化MM-7修复石油污染土壤影响因素重要性[J]. 化工进展, 2012, 31(02 ): 448-452. |
[8] | 吴作军,卢滇楠,张敏莲,刘 铮. 微生物分子生态学技术及其在石油污染土壤修复中的应用现状与展望 [J]. 化工进展, 2010, 29(5): 789-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |