化工进展 ›› 2023, Vol. 42 ›› Issue (11): 5648-5660.DOI: 10.16085/j.issn.1000-6613.2022-2293
收稿日期:
2022-12-11
修回日期:
2023-04-21
出版日期:
2023-11-20
发布日期:
2023-12-15
通讯作者:
吴玉锋
作者简介:
徐漓(1985—),男,博士研究生,研究方向为生物质高值化转化利用。E-mail:94471442@qq.com。
基金资助:
XU Li1(), WU Yufeng1(), ZHANG Yuanjia2, HU Shuangqing2
Received:
2022-12-11
Revised:
2023-04-21
Online:
2023-11-20
Published:
2023-12-15
Contact:
WU Yufeng
摘要:
广东农林废弃物资源丰富,推动农林废弃物多途径资源化利用符合国家节能减排、绿色循环发展的要求,也是广东城乡环境保护及治理的重大任务,对助力国家“双碳”目标也具有重要意义。本文综述了农林废物直燃/气化发电、制备沼气/绿氢、制备能源化学品及电化学应用等资源化利用工艺路径,解析了不同技术路径发展现状及存在问题,探讨了农林废弃物多途径资源化利用的发展前景,提出了促进农林废弃物资源化利用行业发展的建议。广东农林废弃物多途径高效资源化利用的发展,以期为实现我国“双碳”目标约束条件下生物质能源转型发展提供普适模型和理论支撑。
中图分类号:
徐漓, 吴玉锋, 张元甲, 胡双清. “双碳”目标背景下广东农林废弃物综合利用技术进展[J]. 化工进展, 2023, 42(11): 5648-5660.
XU Li, WU Yufeng, ZHANG Yuanjia, HU Shuangqing. Progress of comprehensive utilization technology of agricultural and forestry wastes in Guangdong under the background of “carbon peaking and carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5648-5660.
农作物 | 收获面积/万亩 | 亩产公斤/亩 | 总产量/万吨 |
---|---|---|---|
经济作物 | 3427.98 | ||
甘蔗/糖蔗 | 225.16 | 5803 | 1306.60 |
油料作物/花生 | 536.16 | 219 | 117.30 |
麻类 | 0.09 | 212 | 0.02 |
烟叶 | 23.77 | 163 | 3.88 |
中草药材 | 84.57 | 491 | 41.53 |
蔬菜及食用菌 | 2088.37 | 1846 | 3855.73 |
瓜果类(果用瓜) | 64.70 | 2026 | 131.06 |
其他农作物/木薯 | 405.16 | — | — |
粮食作物 | 3471.80 | ||
稻谷 | 3319.50 | 386 | 1279.90 |
玉米 | 120.08 | 303 | 54.54 |
大豆 | 31.79 | 183 | 8.71 |
小麦 | 0.42 | 233 | 0.15 |
表1 广东主要农作物生产统计
农作物 | 收获面积/万亩 | 亩产公斤/亩 | 总产量/万吨 |
---|---|---|---|
经济作物 | 3427.98 | ||
甘蔗/糖蔗 | 225.16 | 5803 | 1306.60 |
油料作物/花生 | 536.16 | 219 | 117.30 |
麻类 | 0.09 | 212 | 0.02 |
烟叶 | 23.77 | 163 | 3.88 |
中草药材 | 84.57 | 491 | 41.53 |
蔬菜及食用菌 | 2088.37 | 1846 | 3855.73 |
瓜果类(果用瓜) | 64.70 | 2026 | 131.06 |
其他农作物/木薯 | 405.16 | — | — |
粮食作物 | 3471.80 | ||
稻谷 | 3319.50 | 386 | 1279.90 |
玉米 | 120.08 | 303 | 54.54 |
大豆 | 31.79 | 183 | 8.71 |
小麦 | 0.42 | 233 | 0.15 |
单位项目 | 地点 | 装机容量/MW | 原料 |
---|---|---|---|
广东粤电湛江生物质发电有限公司 | 湛江 | 2×50,直燃发电机组 | 树皮、枝叶、树根、秸秆、甘蔗叶、皮壳等农林废弃物 |
韶能集团新丰旭能生物质能发电工程 | 韶关 | 120,直燃发电机组 | 树皮、枝叶、树根、秸秆、甘蔗叶、皮壳等农林废弃物 |
潮州市环保发电厂项目 | 潮州 | 35 | 生活垃圾 |
珠海市环保生物质热电工程项目 | 珠海 | 60 | 生活垃圾 |
茂名电白绿能环保发电项目 | 茂名 | 50 | 生活垃圾 |
信宜市绿能环保发电项目 | 茂名 | 24 | 生活垃圾 |
汕头市澄海洁源垃圾发电厂扩建项目 | 汕头市 | 25 | 生活垃圾 |
汕头市潮阳区生活垃圾焚烧发电厂BOT二期扩建项目 | 汕头市 | 25 | 生活垃圾 |
表2 广东生物质直燃/气化发电工程
单位项目 | 地点 | 装机容量/MW | 原料 |
---|---|---|---|
广东粤电湛江生物质发电有限公司 | 湛江 | 2×50,直燃发电机组 | 树皮、枝叶、树根、秸秆、甘蔗叶、皮壳等农林废弃物 |
韶能集团新丰旭能生物质能发电工程 | 韶关 | 120,直燃发电机组 | 树皮、枝叶、树根、秸秆、甘蔗叶、皮壳等农林废弃物 |
潮州市环保发电厂项目 | 潮州 | 35 | 生活垃圾 |
珠海市环保生物质热电工程项目 | 珠海 | 60 | 生活垃圾 |
茂名电白绿能环保发电项目 | 茂名 | 50 | 生活垃圾 |
信宜市绿能环保发电项目 | 茂名 | 24 | 生活垃圾 |
汕头市澄海洁源垃圾发电厂扩建项目 | 汕头市 | 25 | 生活垃圾 |
汕头市潮阳区生活垃圾焚烧发电厂BOT二期扩建项目 | 汕头市 | 25 | 生活垃圾 |
研究者 | 研究内容 | 研究成果 |
---|---|---|
Vispute等[ | 生物质快速热解制备生物油及化学品 | 采用加氢和沸石催化相结合的综合催化方法,将生物质热解油转化为化学品原料 |
Cheng等[ | 生物质催化热解制备化学品 | 采用双功能Ga/ZSM-5催化剂快速催化热解木质纤维素生物质制备芳香族化合物 |
Zhang等[ | 生物质微波转化制备化学品 | 研究了微波辅助下木质素模型化合物在离子液体中转化为芳香族化合物 |
Yang等[ | 生物质热解特性 | 解析了纤维素、半纤维素和木质素热解特征及演化规律 |
Wang等[ | 生物质热解机理 | 解析了生物质热解机理模型及反应路线 |
Li等[ | 生物质气化制氢 | 钙基和镍基吸附强化玉米秸秆水蒸气气化制氢 |
Lu等[ | 生物质热解机理 | 纤维素快速热解特征链端和脱水单元的作用机理 |
Dou等[ | 生物质热解制液体燃料 | Co-Zn-β沸石催化剂催化转化硫酸盐木质素制备液体燃料 |
Shan等[ Xing等[ | 生物质催化热解制备液体燃料 | 铜、钾催化农林废弃物制备生物油及生物柴油 |
Lang等[ | 生物质气化兆瓦级应用 | 1MW固定床生物质气化飞灰及焦油脱除 |
Zhuang等[ | 生物质气化制合成气及氢焦 | 生物废物衍生氢焦结构-反应关系对后续热解气化性能影响 |
Wang等[ | 生物质气化合成二甲醚及液体燃料 | 生物质气化制备二甲醚、汽油为一体的生物质制液体燃料的实验装置 |
Zhang等[ | 生物质合成气催化合成气汽油 | 采用Ni/ASA催化剂将生物质合成气低聚反应制备富烯烃汽油系列碳氢化合物 |
Wei等[ | 生物质化学链气化 | 基于负碳排放的生物质化学链气化制备合成气,裂解CO2 |
Zhang等[ | 生物质制低碳烯烃 | Fe改性ZSM-5催化剂催化生物质向制备低碳烯烃 |
表3 农林废弃物热解/气化制备燃料和化学品
研究者 | 研究内容 | 研究成果 |
---|---|---|
Vispute等[ | 生物质快速热解制备生物油及化学品 | 采用加氢和沸石催化相结合的综合催化方法,将生物质热解油转化为化学品原料 |
Cheng等[ | 生物质催化热解制备化学品 | 采用双功能Ga/ZSM-5催化剂快速催化热解木质纤维素生物质制备芳香族化合物 |
Zhang等[ | 生物质微波转化制备化学品 | 研究了微波辅助下木质素模型化合物在离子液体中转化为芳香族化合物 |
Yang等[ | 生物质热解特性 | 解析了纤维素、半纤维素和木质素热解特征及演化规律 |
Wang等[ | 生物质热解机理 | 解析了生物质热解机理模型及反应路线 |
Li等[ | 生物质气化制氢 | 钙基和镍基吸附强化玉米秸秆水蒸气气化制氢 |
Lu等[ | 生物质热解机理 | 纤维素快速热解特征链端和脱水单元的作用机理 |
Dou等[ | 生物质热解制液体燃料 | Co-Zn-β沸石催化剂催化转化硫酸盐木质素制备液体燃料 |
Shan等[ Xing等[ | 生物质催化热解制备液体燃料 | 铜、钾催化农林废弃物制备生物油及生物柴油 |
Lang等[ | 生物质气化兆瓦级应用 | 1MW固定床生物质气化飞灰及焦油脱除 |
Zhuang等[ | 生物质气化制合成气及氢焦 | 生物废物衍生氢焦结构-反应关系对后续热解气化性能影响 |
Wang等[ | 生物质气化合成二甲醚及液体燃料 | 生物质气化制备二甲醚、汽油为一体的生物质制液体燃料的实验装置 |
Zhang等[ | 生物质合成气催化合成气汽油 | 采用Ni/ASA催化剂将生物质合成气低聚反应制备富烯烃汽油系列碳氢化合物 |
Wei等[ | 生物质化学链气化 | 基于负碳排放的生物质化学链气化制备合成气,裂解CO2 |
Zhang等[ | 生物质制低碳烯烃 | Fe改性ZSM-5催化剂催化生物质向制备低碳烯烃 |
制氢过程 | 制氢成本/CNY·kg-1 | 制氢纯度 | 制氢排放/kg CO2·kg H2-1 | 特点 | 参考文献 |
---|---|---|---|---|---|
煤气化制氢 | 11~20(无/有CCS) | 35%~40% | 20 | 工艺成熟,成本较低,产物纯度需后续提高 | [ |
甲烷重整制氢 | 18~24(无/有CCS) | 75%~90% | 10 | 工艺成熟,反应速率快,蒸汽重整需外供热 | [ |
电解水制氢 | 35~46 | 超过99.99% | 30 | 产物纯度好,但能耗相对较高,能量利用率低 | [ |
可再生能源发电-电解水制氢 | 28~85 | 超过99.99% | 低于4.9 | 过程清洁,发电及电解水效率受限制 | [ |
生物质气化制氢 | 30~33 | 35%~40% | 近零 | 反应速率快,能耗低,环境友好 | [ |
生物质化学链制氢 | 12~15 | 超过99.9 % | 近零 | 反应速率快,能耗低,产物纯度高 | [ |
生物质发酵制氢 | — | 超过40 % | 近零 | 适用于液相重整制氢,存在生物质解聚及反应速率等瓶颈 | [ |
生物质光催化制氢 | — | 66.7%左右 | 近零 | 无污染,有工业化潜力,但光能转化效率及氢产率不高 | [ |
表4 不同制氢路径对比分析
制氢过程 | 制氢成本/CNY·kg-1 | 制氢纯度 | 制氢排放/kg CO2·kg H2-1 | 特点 | 参考文献 |
---|---|---|---|---|---|
煤气化制氢 | 11~20(无/有CCS) | 35%~40% | 20 | 工艺成熟,成本较低,产物纯度需后续提高 | [ |
甲烷重整制氢 | 18~24(无/有CCS) | 75%~90% | 10 | 工艺成熟,反应速率快,蒸汽重整需外供热 | [ |
电解水制氢 | 35~46 | 超过99.99% | 30 | 产物纯度好,但能耗相对较高,能量利用率低 | [ |
可再生能源发电-电解水制氢 | 28~85 | 超过99.99% | 低于4.9 | 过程清洁,发电及电解水效率受限制 | [ |
生物质气化制氢 | 30~33 | 35%~40% | 近零 | 反应速率快,能耗低,环境友好 | [ |
生物质化学链制氢 | 12~15 | 超过99.9 % | 近零 | 反应速率快,能耗低,产物纯度高 | [ |
生物质发酵制氢 | — | 超过40 % | 近零 | 适用于液相重整制氢,存在生物质解聚及反应速率等瓶颈 | [ |
生物质光催化制氢 | — | 66.7%左右 | 近零 | 无污染,有工业化潜力,但光能转化效率及氢产率不高 | [ |
1 | BP PLC. Statistical review of world energy 2020[R]. London: BP PLC, 2021. |
2 | 张晟义, 张杰, 王童, 等. 我国农业生物质发电潜力评估及环境效益分析[J]. 云南农业大学学报(社会科学版), 2021, 15(4):51-60. |
ZHANG Shengyi, ZHANG Jie, WANG Tong, et al. The Potential Assessment and Environment Benefit Analysis of Agricultural Biomass Power Generation in China[J]. Journal of Yunnan Agricultural University(Social Science), 2021,15(4): 51-60. | |
3 | 中华人民共和国国家统计局. 中国统计年鉴-2021 [R/OL]. [2022-12-11]. . |
National Bureau of Statistics of the People's Republic of China. China statistical yearbook-2021 [R/OL]. [2022-12-11]. . | |
4 | Truong Xuan DO, YOUNGIL Lim, HEEJUNG Yeo, et al. Techno-economic analysis of power plant via circulating fluidized-bed gasification from woodchips[J]. Energy, 2014, 70(3): 547-560. |
5 | 张岳琦, 廖翠萍, 谢鹏程, 等. 广东省生物质发电应用的影响因素分析[J]. 新能源进展, 2020, 8(6): 525-532. |
ZHANG Yueqi, LIAO Cuiping, XIE Pengcheng, et al. Influence factors analysis of biomass power generation application in guangdong province[J]. Advances in New and Renewable Energy, 2020, 8(6): 524-532. | |
6 | YANG Haiping, LIU Biao, CHEN Yingquan, et al. Application of biomass pyrolytic polygeneration technology using retort reactors[J]. Bioresource Technology, 2016, 200: 64-71. |
7 | LEE Uisung, BALU Elango, CHUNG J N. An experimental evaluation of an integrated biomass gasification and power generation system for distributed power applications[J]. Applied Energy, 2013, 101: 699-708. |
8 | NAKYAI Teeranun, AUTHAYANUN Suthida, PATCHARAVORACHOT Yaneeporn, et al. Exergoeconomics of hydrogen production from biomass air-steam gasification with methane co-feeding[J]. Energy Conversion and Management, 2017, 140: 228-239. |
9 | ZHOU Zhaoqiu, YIN Xiuli, XU Jie, et al. The development situation of biomass gasification power generation in China[J]. Energy Policy, 2012, 51: 52-57. |
10 | LANG Lin, YANG Wenshen, XIE Jianjun, et al. Oxidative filtration for flyash & tar removal from 1.0 MWth fixed-bed biomass air gasification[J]. Biomass and Bioenergy, 2019, 122: 145-155. |
11 | ZHENG Anqing, HUANG Zhen, WEI Guoqiang, et al. Controlling deoxygenation pathways in catalytic fast pyrolysis of biomass and its components by using metal-oxide nanocomposites[J]. iScience, 2020, 23(1): 100814. |
12 | ADENIYI A G, OTOIKHIAN K S, IGHALO J O. Steam reforming of biomass pyrolysis oil: A review[J]. International Journal of Chemical Reactor Engineering, 2019, 17(4): 1-25. |
13 | KUMAR Sachin, SANI Rajesh. Biorefining of biomass to biofuels: Opportunities and perception[M]. Berlin: Springer International Publishing, 2018. |
14 | HERTZOG J, MASE C, HUBERT-ROUX M, et al. Characterization of heavy products from lignocellulosic biomass pyrolysis by chromatography and fourier transform mass spectrometry: A review[J]. Energy & Fuels, 2021, 35(22): 17979-18007. |
15 | LEE Eun Hwa, PARK Rae-su, KIM Hannah, et al. Hydrodeoxygenation of guaiacol over Pt loaded zeolitic materials[J]. Journal of Industrial and Engineering Chemistry, 2016, 37: 18-21. |
16 | RESASCO Daniel E, CROSSLEY Steven P. Implementation of concepts derived from model compound studies in the separation and conversion of bio-oil to fuel[J]. Catalysis Today, 2015, 257: 185-199. |
17 | LEE Hyung Won, PARK Sung Hoon, JEON Jong-Ki, et al. Upgrading of bio-oil derived from biomass constituents over hierarchical unilamellar mesoporous MFI nanosheets[J]. Catalysis Today, 2014, 232: 119-126. |
18 | OASMAA Anja, FONTS Isabel, PELAEZ-SAMANIEGO Manuel Raul, et al. Pyrolysis oil multiphase behavior and phase stability: A review[J]. Energy & Fuels, 2016, 30(8): 6179-6200. |
19 | HUANG C W, NGUYEN B S, WU J C S, et al. A current perspective for photocatalysis towards the hydrogen production from biomass-derived organic substances and water[J]. International Journal of Hydrogen Energy, 2020, 45(36): 18144-18159. |
20 | Soh Kheang LOH. The potential of the Malaysian oil palm biomass as a renewable energy source[J]. Energy Conversion and Management, 2017, 141: 285-298. |
21 | AHMAD Farah B, ZHANG Zhanying, DOHERTY William O S, et al. The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery[J]. Renewable and Sustainable Energy Reviews, 2019, 109: 386-411. |
22 | PINHEIRO PIRES Anamaria Paiva, ARAUZO Jesus, FONTS Isabel, et al. Challenges and opportunities for bio-oil refining: A review[J]. Energy & Fuels, 2019, 33(6): 4683-4720. |
23 | ELLIOTT Douglas C. Historical developments in hydroprocessing bio-oils[J]. Energy & Fuels, 2007, 21(3): 1792-1815. |
24 | WANG Huamin, MALE Jonathan, WANG Yong. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. Acs Catalysis, 2013, 3(5): 1047-1070. |
25 | KUCHEROV Fedor A, ROMASHOV Leonid V, GALKIN Konstantin I, et al. Chemical transformations of biomass-derived C6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8064-8092. |
26 | PETRUS Leo, NOORDERMEER Minke A. Biomass to biofuels, a chemical perspective[J]. Green Chemistry, 2006, 8(10): 861-867. |
27 | DIAO Xinyong, JI Na, LI Xinxin, et al. Fabricating high temperature stable Mo-Co9S8/Al2O3 catalyst for selective hydrodeoxygenation of lignin to arenes[J]. Applied Catalysis B: Environmental, 2022, 305: 121067. |
28 | XU Yanfei, LI Xiangyang, GAO Junhu, et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science 2021, 371: 610–613. |
29 | DING Mingyue, MA Longlong, ZHANG Qian, et al. Enhancement of conversion from bio-syngas to higher alcohols fuels over K-promoted Cu-Fe bimodal pore catalysts[J]. Fuel Processing Technology, 2017, 159: 436-441. |
30 | TU Junling, DING Mingyue, WANG Tiejun, et al. Direct conversion of bio-syngas to gasoline fuels over a Fe3O4@C fischer-tropsch synthesis catalyst[J]. Energy Procedia, 2017, 105: 82-87. |
31 | HUA Yuxi, GUO Xiaoming, MAO Dongsen, et al. Single-step synthesis of dimethyl ether from biomass-derived syngas over CuO-ZnO-MO x (M=Zr, Al, Cr, Ti)/HZSM-5 hybrid catalyst: Effects of MO x [J]. Applied Catalysis A: General, 2017, 540: 68-74. |
32 | INSYANI Rizki, KIM Min-Kyeong, CHOI Jae-Wook, et al. Selective hydrodeoxygenation of biomass pyrolysis oil and lignin-derived oxygenates to cyclic alcohols using the bimetallic NiFe core-shell supported on TiO2 [J]. Chemical Engineering Journal, 2022, 446: 136578. |
33 | ZHAO Shangqing, LI Haiwei, WANG Bo, et al. Recent advances on syngas conversion targeting light olefins[J]. Fuel, 2022, 321: 124124. |
34 | SUNDARAM Smitha, KOLB Gunther, HESSEL Volker, et al. Energy-efficient routes for the production of gasoline from biogas and pyrolysis oil-process design and life-cycle assessment[J]. Industrial & Engineering Chemistry Research, 2017, 56(12): 3373-3387. |
35 | Nirmal KUMAR R., AARTHI V From biomass to syngas, fuels and chemicals—A review[C]//National Conference on Energy and Chemicals from Biomass, Ncecb, 2020. |
36 | VISPUTE Tushar P, ZHANG Huiyan, SANNA Aimaro, et al. Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils[J]. Science, 2010, 330: 1222-1227. |
37 | CHENG Yuting, Jungho JAE, SHI Jian, et al. Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts[J]. Angewandte Chemie International Edition, 2012, 51(6): 1387-1390. |
38 | ZHANG Bo, LI Changzhi, DAI Tao, et al. Microwave-assisted fast conversion of lignin model compounds and organosolv lignin over methyltrioxorhenium in ionic liquids[J]. RSC Advances, 2015, 5(103): 84967-84973. |
39 | YANG Haiping, YAN Rong, CHEN Hanping, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788. |
40 | WANG Shurong, DAI Gongxin, YANG Haiping, et al. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
41 | LI Bin, YANG Haiping, WEI Liangyuan, et al. Absorption-enhanced steam gasification of biomass for hydrogen production: Effects of calcium-based absorbents and NiO-based catalysts on corn stalk pyrolysis-gasification[J]. International Journal of Hydrogen Energy, 2017, 42(9): 5840-5848. |
42 | LU Qiang, HU Bin, ZHANG Zhenxi, et al. Mechanism of cellulose fast pyrolysis: The role of characteristic chain ends and dehydrated units[J]. Combustion and Flame, 2018, 198: 267-277. |
43 | DOU Xiaomeng, JIANG Xiao, LI Wenzhi, et al. Highly efficient conversion of Kraft lignin into liquid fuels with a Co-Zn-beta zeolite catalyst[J]. Applied Catalysis B: Environmental, 2020, 268: 118429. |
44 | SHAN Rui, LU Lili, SHI Yueyue, et al. Catalysts from renewable resources for biodiesel production[J]. Energy Conversion and Management, 2018, 178: 277-289. |
45 | XING Shiyou, YUAN Haoran, QI Yujie, et al. Characterization of the decomposition behaviors of catalytic pyrolysis of wood using copper and potassium over thermogravimetric and Py-GC/MS analysis[J]. Energy, 2016,114: 634-646. |
46 | ZHUANG Xiuzheng, ZHAN Hao, SONG Yanpei, et al. Structure-reactivity relationships of biowaste-derived hydrochar on subsequent pyrolysis and gasification performance[J]. Energy Conversion and Management, 2019, 199: 112014. |
47 | WANG Zhiqi, HE Tao, LI Jianqing, et al. Design and operation of a pilot plant for biomass to liquid fuels by integrating gasification, DME synthesis and DME to gasoline[J]. Fuel, 2016, 186: 587-596. |
48 | ZHANG Qian, WANG Tiejun, LI Yuping, et al. Olefin-rich gasoline-range hydrocarbons from oligomerization of bio-syngas over Ni/ASA catalyst[J]. Fuel Processing Technology, 2017, 167: 702-710. |
49 | WEI Guoqiang, DENG Lifang, YUAN Haoran, et al. Enhanced chemical looping gasification of biomass coupled with CO2 splitting based on carbon negative emission[J]. Energy Conversion and Management, 2022, 260: 115597. |
50 | ZHANG Shihong, YANG Mingfa, SHAO Jingai, et al. The conversion of biomass to light olefins on Fe-modified ZSM-5 catalyst: Effect of pyrolysis parameters[J]. Science of the Total Environment, 2018, 628/629: 350-357. |
51 | ANGELIDAKI Irini, TREU Laura, TSAPEKOS Panagiotis, et al. Biogas upgrading and utilization: Current status and perspectives[J]. Biotechnol Adv, 2018, 36(2): 452-466. |
52 | KUMAR Manish, DUTTA Shanta, YOU Siming, et al. A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge[J]. Journal of Cleaner Production, 2021: 127143. |
53 | DONG Lili, CAO Guangli, GUO Xianzhang, et al. Efficient biogas production from cattle manure in a plug flow reactor: A large scale long term study[J]. Bioresource Technology, 2019, 278: 450-455. |
54 | WANG Pixiang, PENG Haixin, ADHIKARI Sushil, et al. Enhancement of biogas production from wastewater sludge via anaerobic digestion assisted with biochar amendment[J]. Bioresource Technology, 2020, 309: 123368. |
55 | MILTNER Martin, MAKARUK Alexander, HARASEK Michael. Review on available biogas upgrading technologies and innovations towards advanced solutions[J]. Journal of Cleaner Production, 2017, 161: 1329-1337. |
56 | ZHANG Le, ZHANG Jingxin, Kai-Chee LOH. Activated carbon enhanced anaerobic digestion of food waste—Laboratory-scale and pilot-scale operation[J]. Waste Management, 2018, 75: 270-279. |
57 | 曾升, 李进, 王鑫, 等. 中国氢能利用技术进展及前景展望[J]. 电源技术, 2022, 46(7): 716-722. |
ZENG Sheng, LI Jin, WANG Xin, et al. Progress and prospect of hydrogen energy utilization technology in China[J]. Chinese Journal of Power Sources, 2022, 46(7): 716-722. | |
58 | Özgün TEZER, Nazlıcan KARABAĞ, Atakan ÖNGEN, et al. Biomass gasification for sustainable energy production: A review[J]. International Journal of Hydrogen Energy, 2022, 47(34): 15419-15433. |
59 | GUO Jianxin, TAN Xianchun, ZHU Kaiwei, et al. Integrated management of mixed biomass for hydrogen production from gasification[J]. Chemical Engineering Research and Design, 2022, 179: 41-55. |
60 | DAVIS Kayla Alicia, YOO Sunghoon, SHULER Eric W, et al. Photocatalytic hydrogen evolution from biomass conversion[J]. Nano Converg, 2021, 8(1): 6-24. |
61 | PEIN Mathias, NEUMANN Nicole Carina, VENSTROM Luke J, et al. Two-step thermochemical electrolysis: An approach for green hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(49): 24909-24918. |
62 | VIGNESHWAR Sivakumar Shri, SWETHA Authilingam, GOPINATH Kannappan Panchamoorthy, et al. Photo‐catalytic reforming of aqueous phase derived from hydrothermal liquefaction of Nostoc ellipsosporum for bio‐hydrogen production[J]. International Journal of Energy Research, 2021, 45(14): 19909-19920. |
63 | SIVARAMAKRISHNAN Ramachandran, RAMPRAKASH Balasubramani, RAMADOSS Govindarajan, et al. High potential of Rhizopus treated rice bran waste for the nutrient-free anaerobic fermentative biohydrogen production[J]. Bioresource Technology, 2021, 319: 124193. |
64 | 周亮, 姚金刚, 易维明,等. 尖晶石 MFe2O4 ( M=Co、Cu、Mg) 催化沼气重整制氢研究[J]. 山东理工大学学报(自然科学版), 2020, 34(5):1-6, 10. |
ZHOU Liang, YAO Jingang, YI Weiming, et al. Hydrogen production from biogas reforming over spinel MFe2O4( M=Co, Cu, Mg) catalysts[J]. Journal of Shandong University of Technology(Natural Science Edition), 2020, 34(5): 1-6, 10. | |
65 | WEI Guoqiang, ZHAO Weina, MENG Junguang, et al. Hydrogen production from vegetable oil via a chemical looping process with hematite oxygen carriers[J]. Journal of Cleaner Production, 2018, 200: 588-597. |
66 | ZHU Xing, IMTIAZ Qasim, DONAT Felix, et al. Chemical looping beyond combustion-A perspective[J]. Energy & Environmental Science, 2020, 13(3): 772-804. |
67 | WEI Guoqiang, HUANG Jie, FAN Yuyang, et al. Chemical looping reforming of biomass based pyrolysis gas coupling with chemical looping hydrogen by using Fe/Ni/Al oxygen carriers derived from LDH precursors[J]. Energy Conversion and Management, 2019, 179: 304-313. |
68 | YAN Jingchun, SUN Rong, SHEN Laihong, et al. Hydrogen-rich syngas production with tar elimination via biomass chemical looping gasification (BCLG) using BaFe2O4/Al2O3 as oxygen carrier[J]. Chemical Engineering Journal, 2020, 387: 124107. |
69 | ZHU Xing, ZHANG Mingyue, LI Kongzhai, et al. Chemical-looping water splitting over ceria-modified iron oxide: Performance evolution and element migration during redox cycling[J]. Chemical Engineering Science, 2018, 179: 92-103. |
70 | ZHU Xing, LI Kongzhai, NEAL Luke, et al. Perovskites as geo-inspired oxygen storage materials for chemical looping and three-way catalysis: A perspective[J]. ACS Catalysis, 2018, 8(9): 8213-8236. |
71 | ZHENG Zongming, LUO Laixing, CHEN Shubo, et al. Activating Fe2O3 using K2CO3-containing ethanol solution for corn stalk chemical looping gasification to produce hydrogen[J]. International Journal of Hydrogen Energy, 2020, 45(41): 21004-21013. |
72 | CUI Dongxu, QIU Yu, LI Min, et al. Cu-Fe-Al-O mixed spinel oxides as oxygen carrier for chemical looping hydrogen generation[J]. International Journal of Hydrogen Energy, 2020, 45(21): 11908-11915. |
73 | BOCK Sebastian, ZACHARIAS Robert, HACKER Viktor. Co-production of pure hydrogen, carbon dioxide and nitrogen in a 10 kW fixed-bed chemical looping system[J]. Sustainable Energy & Fuels, 2020, 4(3): 1417-1426. |
74 | ISHAQ H, DINCER I. Comparative assessment of renewable energy-based hydrogen production methods[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110192. |
75 | WEI Guoqiang, WU Xianshuang, MENG Junguang, et al. Performance evaluation of hematite oxygen carriers in high purity hydrogen generation from cooking oil by chemical looping reaction[J]. International Journal of Hydrogen Energy, 2018, 43: 20500-20512. |
76 | 阳国军,刘会友. 现代煤化工与绿电和绿氢耦合发展现状及展望[J]. 石油学报(石油加工), 2022, 38 (4): 995-1000. |
YANG Guojun, LIU Huiyou. Status and prospect for the coupling development of modern coal chemical industry with green[J]. Electricity and Green Hydrogen Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(4): 995-1000. | |
77 | 郭文萍, 胡力. 煤制氢装置联产燃料气工艺路线对比[J]. 大氮肥, 2022, 45(2): 133-139. |
GUO Wenping, HU Li. Comparison of process routes for co production of fuel gas from coal based hydrogen production units[J]. Large Scale Nitrogenous Fertilizer Industry, 2022, 45(2): 133-139. | |
78 | 周天, 赵叶静, 刘志强, 等. 生物质制氢与煤制氢过程的技术经济分析与生命周期评价[J]. 中南大学学报(自然科学版), 2022, 53(7): 2733-2745. |
ZHOU Tian, ZHAO Yejing, LIU Zhiqiang, et al. Techno-economic analysis and life cycle analysis of biomass-to hydrogen and coal-to-hydrogen[J]. Journal of Central South University (Science and Technology), 2022, 53(7): 2733-2745. | |
79 | 刘慧敏, 黄兴, 赵博宇, 等. 甲烷水蒸气重整制氢研究进展[J]. 石油与天然气化工, 2022, 53(1): 53-61. |
LIU Huimin, HUANG Xing, ZHAO Boyu, et al. Research progress of methane steam reforming for hydrogen production[J]. Chemmical Engineering of Oil & Gas, 2022, 51(1): 53-61. | |
80 | HE Feng, LI Fanxing. Hydrogen production from methane and solar energy-Process evaluations and comparison studies[J]. International Journal of Hydrogen Energy, 2014, 39(31): 18092-18102. |
81 | GROENEMANS Hugo, SAUR Genevieve, MITTELSTEADT Cortney, et al. Techno-economic analysis of offshore wind PEM water electrolysis for H2 production[J]. Current Opinion in Chemical Engineering, 2022, 37: 100828. |
82 | LEE Jung Min, LEE Sang Hyun, BAIK Joon Hyun, et al. Techno-economic analysis of hydrogen production electrically coupled to a hybrid desalination process[J]. Desalination, 2022, 539: 115949-115966. |
83 | PALANISAMY Abirami, SOUNDARRAJAN Nivedha, RAMASAMY Govindarasu. Analysis on production of bioethanol for hydrogen generation[J]. Environmental Science and Pollution Research, 2021, 28(45): 63690-63705. |
84 | LEPAGE Thibaut, KAMMOUN Maroua, SCHMETZ Quentin, et al. Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment[J]. Biomass and Bioenergy, 2021, 144: 105920. |
85 | CUI Peizhe, YAO Dong, MA Zhaoyuan, et al. Life cycle water footprint comparison of biomass-to-hydrogen and coal-to-hydrogen processes[J]. Science of the Total Environment, 2021, 773: 145056-145064. |
86 | ROSA Lorenzo, MAZZOTTI Marco. Potential for hydrogen production from sustainable biomass with carbon capture and storage[J]. Renewable and Sustainable Energy Reviews, 2022, 157: 112123-112132. |
87 | EDRISI Abdolaziz, MANSOORI Zohreh, DABIR Bahram. Urea synthesis using chemical looping process—Techno-economic evaluation of a novel plant configuration for a green production[J]. International Journal of Greenhouse Gas Control, 2016, 44: 42-51. |
88 | FAN Junming, HONG Hui, ZHU Lin, et al. Thermodynamic and environmental evaluation of biomass and coal co-fuelled gasification chemical looping combustion with CO2 capture for combined cooling, heating and power production[J]. Applied Energy, 2017, 195: 861-876. |
89 | LI Denian, CHEN Huibing, ZHANG Yuyuan, et al. Upcycling biomass tar into highly porous, defective and pyridinic-n-enriched graphene nanohybrid as efficient bifunctional catalyst for Zn-air battery[J]. Electrochimica Acta, 2020, 364: 137319. |
90 | HU Mengliang, WANG Zhinan, LI Mingli, et al. Nanosheet MoS2-decorated MoO2 on porous carbon as electrodes for efficient hydrogen evolution[J]. ACS Applied Nano Materials, 2022, 5(6): 8175-8183. |
91 | 程宇, 熊源泉. 稻壳基碳材料制备及其电化学性能研究[J]. 电源技术, 2021, 45(12): 1620-1623, 1635. |
CHENG Yu, XIONG Yuanquan. Preparation of rice husk-based porous graphitized carbon material and its electrochemical performance[J]. Chinese Journal of Power Source, 2021, 45(12): 1620-1623, 1635. | |
92 | 李云猛. 生物质基多孔碳材料的绿色制备及其超电容性能研究[D]. 上海: 上海大学, 2019. |
LI Yunmeng. Green preparation and supercapacitance properties of biomass-based porous carbon materials[D]. Shanghai: Shanghai University, 2019. | |
93 | BISWAL Mandakini, BANERJEE Abhik, Meenal DEO, et al. From dead leaves to high energy density supercapacitors[J]. Energy & Environmental Science, 2013, 6(4): 1249-1259. |
94 | YUAN Haoran, CHEN Huibing, LI Denian, et al. Catalytic synthesis and simultaneous co-doping of hierarchically porous carbon with in-situ coated graphene from biomass tar as efficient catalyst for ORR[J]. Electrochemistry Communications, 2019, 100: 52-59. |
95 | 孙乐乐. 甘蔗渣为直接燃料的生物质液流电池研究[D]. 广州: 广东工业大学, 2019. |
SUN Le/Yue)Le/Yue). Study of Biomass liquid flow fuel cell by using bagasse as direct fuels[D]. Guangzhou: Guangdong University of Technology, 2019. |
[1] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[2] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[3] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[4] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[5] | 刘洋, 叶小梅, 苗晓, 王成成, 贾昭炎, 曹春晖, 奚永兰. 农村有机生活垃圾干发酵氨胁迫下中试工艺[J]. 化工进展, 2023, 42(7): 3847-3854. |
[6] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[7] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[8] | 马源, 肖晴月, 岳君容, 崔彦斌, 刘姣, 许光文. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
[9] | 阮鹏, 杨润农, 林梓荣, 孙永明. 甲烷催化部分氧化制合成气催化剂的研究进展[J]. 化工进展, 2023, 42(4): 1832-1846. |
[10] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[11] | 何阳东, 常宏岗, 王丹, 陈昌介, 李雅欣. 熔融金属法甲烷裂解制氢和碳材料研究进展[J]. 化工进展, 2023, 42(3): 1270-1280. |
[12] | 张巍, 王锐, 缪平, 田戈. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(3): 1257-1269. |
[13] | 祝佳欣, 朱雯喆, 徐俊, 谢靖, 王文标, 谢丽. 基于导电材料强化抗生素胁迫厌氧消化的研究进展[J]. 化工进展, 2023, 42(2): 1008-1019. |
[14] | 郭宇晨, 刘庆林, 蒋金洋, 宗永忠, 王金伟, 李臻, 吕树祥. 含铬污泥资源化方法研究进展[J]. 化工进展, 2023, 42(2): 575-584. |
[15] | 杨程瑞雪, 黄琪媛, 冉建速, 崔耘通, 王健健. 磷酸修饰二氧化硅负载钯催化剂用于木质素衍生物高效水相低温加氢脱氧[J]. 化工进展, 2023, 42(10): 5179-5190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |