化工进展 ›› 2023, Vol. 42 ›› Issue (10): 5390-5398.DOI: 10.16085/j.issn.1000-6613.2022-2032
收稿日期:
2022-11-01
修回日期:
2023-02-01
出版日期:
2023-10-15
发布日期:
2023-11-11
通讯作者:
张静
作者简介:
刘慧慧(1998—),女,硕士研究生,研究方向为磁性纳米粒子载药。E-mail:hui15981979015@163.com。
LIU Huihui(), SHI Xiaofei, WANG Qiannan, LIU Jinbo, ZHANG Jing()
Received:
2022-11-01
Revised:
2023-02-01
Online:
2023-10-15
Published:
2023-11-11
Contact:
ZHANG Jing
摘要:
研究开发了一种基于磁性介孔二氧化硅和聚多巴胺(PDA)混合体的智能给药平台,可用于pH响应性给药。通过共沉淀法制备Fe3O4,以十六烷基三甲基溴化铵(CTAB)为模板,硅酸四乙酯(TEOS)为硅源,通过Stober法获得了磁性纳米材料Fe3O4@mSiO2。负载抗癌药物阿霉素(DOX)后,通过碱性条件下多巴胺的氧化自聚合,在其表面形成pH敏感的PDA涂层,得到DOX/Fe3O4@mSiO2@PDA磁性纳米载药系统。通过透射电子显微镜、X射线衍射、傅里叶红外光谱仪、比表面积测试和振动样品磁强计等技术手段对材料进行表征。结果表明Fe3O4@mSiO2的形貌为球形,拥有良好介孔结构和高达619.16m2/g的比表面积;VSM表明载体Fe3O4@mSiO2@PDA具有良好的磁性。当载药过程中DOX浓度为0.5mg/mL、温度为37℃,反应36h后,载药率为51.69%,包封率为82.70%。释药曲线表明纳米载药系统具有pH响应性和药物缓释的特点;噻唑蓝比色法(MTT法)细胞毒性实验表明Fe3O4@mSiO2@PDA生物相容性良好,DOX/Fe3O4@mSiO2@PDA有良好的抗肿瘤效果。该纳米载药系统在药物靶向递送中具有潜在的应用前景。
中图分类号:
刘慧慧, 史笑飞, 王倩男, 刘锦博, 张静. pH响应性磁性介孔纳米载药系统的制备[J]. 化工进展, 2023, 42(10): 5390-5398.
LIU Huihui, SHI Xiaofei, WANG Qiannan, LIU Jinbo, ZHANG Jing. Preparation of pH responsive magnetic mesoporous nanoparticle drug loading system[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5390-5398.
1 | 赵婧, 崔潞, 李映璐, 等. 壳聚糖复合纳米载药体系的构建及其释药性能[J]. 纺织高校基础科学学报, 2022, 35(3): 45-55. |
ZHAO Jing, CUI Lu, LI Yinglu, et al. Construction of chitosan composite nano-drug delivery system and its drug release performance[J]. Basic Sciences Journal of Textile Universities, 2022, 35(3): 45-55. | |
2 | CHENG Xiaokun, ZHANG Yue, Haijun LYU, et al. Porous carbon nanomaterials based tumor targeting drug delivery system: A review[J]. Journal of Inorganic Materials, 2021, 36(1): 9. |
3 | WICKI Andreas, WITZIGMANN Dominik, BALASUBRAMANIAN Vimalkumar, et al. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2015, 200: 138-157. |
4 | PRABAHAR Kousalya, ALANAZI Zahraa, QUSHAWY Mona. Targeted drug delivery system: Advantages, carriers and strategies[J]. Indian Journal of Pharmaceutical Education and Research, 2021, 55(2): 346-353. |
5 | CHEN Minmin, HU Jinxia, BIAN Cancan, et al. pH-responsive and biodegradable ZnO-capped mesoporous silica composite nanoparticles for drug delivery [J]. Materials, 2020, 13(18): 3950. |
6 | MAMIDI Narsimha, DELGADILLO Ramiro Manuel Velasco. Design, fabrication and drug release potential of dual stimuli-responsive composite hydrogel nanoparticle interfaces[J]. Colloids and Surfaces B: Biointerfaces, 2021, 204: 111819. |
7 | XU Zhilang, YANG Die, LONG Tao, et al. pH-Sensitive nanoparticles based on amphiphilic imidazole/cholesterol modified hydroxyethyl starch for tumor chemotherapy[J]. Carbohydrate Polymers, 2022, 277: 118827. |
8 | PALMINTERI Marco, DHAKAR Nilesh Kumar, FERRARESI Alessandra, et al. Cyclodextrin nanosponge for the GSH-mediated delivery of Resveratrol in human cancer cells[J]. Nanotheranostics, 2021, 5(2): 197-212. |
9 | SONG Shuhui, LI Xinyi, JI Yongsheng, et al. GSH/pH dual-responsive and HA-targeting nano-carriers for effective drug delivery and controlled release [J]. Journal of Drug Delivery Science and Technology, 2021, 62: 102327. |
10 | WANG Ying, HAN Ning, ZHAO Qinfu, et al. Redox-responsive mesoporous silica as carriers for controlled drug delivery: A comparative study based on silica and PEG gatekeepers[J]. European Journal of Pharmaceutical Sciences, 2015, 72: 12-20. |
11 | SONG Su Jeong, CHOI Joon Sig. Enzyme-responsive amphiphilic peptide nanoparticles for biocompatible and efficient drug delivery[J]. Pharmaceutics, 2022, 14(1): 143. |
12 | ZHAO Qinfu, LIU Jia, ZHU Wenquan, et al. Dual-stimuli responsive hyaluronic acid-conjugated mesoporous silica for targeted delivery to CD44-overexpressing cancer cells[J]. Acta Biomaterialia, 2015, 23: 147-156. |
13 | DARIVA Camila G, FIGUEIREDO João P H, FERREIRA Catarina, et al. Development of red-light cleavable PEG-PLA nanoparticles as delivery systems for cancer therapy[J]. Colloids and Surfaces B: Biointerfaces, 2020, 196: 111354. |
14 | LIU Jian, LI Feiyang, ZHENG Junxia, et al. Redox/NIR dual-responsive MoS2 for synergetic chemo-photothermal therapy of cancer[J]. Journal of Nanobiotechnology, 2019, 17(1): 1-16. |
15 | DENG Shaoxin, CUI ChengXing, DUAN Lingyao, et al. Anticancer drug release system based on hollow silica nanocarriers triggered by tumor cellular microenvironments[J]. ACS Omega, 2021, 6(1): 553-558. |
16 | GUO Yuming, FANG Qilong, LI Han, et al. Hollow silica nanospheres coated with insoluble calcium salts for pH-responsive sustained release of anticancer drugs [J]. Chemical Communications, 2016, 52(70): 10652-10655. |
17 | 徐德忠, 邹秋霞, 李翱, 等. Fe3O4纳米粒子表面修饰的研究进展[J]. 化学工程与装备, 2022(2): 187-188. |
XU Dezhong, ZOU Qiuxia, LI Ao, et al. Research progress of surface modification of Fe3O4 nanoparticles[J]. Chemical Engineering & Equipment, 2022 (2): 187-188. | |
18 | 廖家蔚, 刘红宇, 谢凯欣, 等. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(S1): 49-55. |
LIAO Jiawei, LIU Hongyu, XIE Kaixin, et al. Progress of Fe3O4 magnetic drug carriers [J]. Materials Reports, 2022, 36 (S1): 49-55. | |
19 | 葛永驰, 刘振宇, 崔宝蓉, 等. pH/温度双重响应型介孔二氧化硅载药微球的制备及缓释性能研究[J]. 现代化工, 2022, 42(11): 155-160, 169. |
GE Yongchi, LIU Zhenyu, CUI Baorong, et al. Preparation of mesoporous silica drug-loading microspheres with dual response to pH/temperature and study on their slow-release properties[J]. Modern Chemical Industry, 2022, 42(11): 155-160, 169. | |
20 | 李彪, 陈颖翀, 申宝德, 等. 智能响应型介孔二氧化硅抗肿瘤纳米递药系统的设计策略与研究应用[J]. 药学学报, 2023, 58(3): 494-505. |
LI Biao, CHEN Yingchong, SHEN Baode, et al. Application research and design strategy on smart responsive mesoporous silica anti-tumor nanodelivery systems[J]. Acta Pharmaceutica Sinica, 2023, 58(3): 494-505. | |
21 | ZHU Yameng, WANG Boyao, CHEN Jian, et al. Facile synthesis of three types of mesoporous silica microspheres as drug delivery carriers and their sustained-release properties[J]. Current Drug Delivery, 2023, 20(9): 1337-1350. |
22 | MENG Huan, WANG Meiying, LIU Huiyu, et al. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice[J]. ACS Nano, 2015, 9(4): 3540-3557. |
23 | CHENG Wei, NIE Junpeng, XU Lyu, et al. pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18462-18473. |
24 | SHAO Dan, GAO Qiang, SHENG Yanshan, et al. Construction of a dual-responsive dual-drug delivery platform based on the hybrids of mesoporous silica, sodium hyaluronate, chitosan and oxidized sodium carboxymethyl cellulose[J]. International Journal of Biological Macromolecules, 2022, 202: 37-45. |
25 | TANG Xianglong, JING Feng, LIN Benlan, et al. pH-responsive magnetic mesoporous silica-based nanoplatform for synergistic photodynamic therapy/chemotherapy[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 15001-15011. |
26 | 余传明, 区嘉雨, 邓翠儿, 等. 基于葡萄糖响应的胰岛素与环磷腺苷双重载药系统的构筑及释药性能[J]. 精细化工, 2023, 40(2): 322-329, 336. |
YU Chuanming, QU Jiayu, DENG Cuier, et al. Fabrication and drug release performance of glucose-responsive double drug delivery system for insulin and cyclic adenosine monophosphate[J]. Fine Chemicals, 2023, 40(2): 322-329, 336. | |
27 | CHEN Hongyu, ZHENG Diwei, LIU Jia, et al. pH-Sensitive drug delivery system based on modified dextrin coated mesoporous silica nanoparticles[J]. International Journal of Biological Macromolecules, 2016, 85: 596-603. |
28 | LI Xiaoran, GARAMUS Vasil M, LI Na, et al. Preparation and characterization of a pH-responsive mesoporous silica nanoparticle dual-modified with biopolymers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 548: 61-69. |
29 | 苏玉培, 潘昊, 刘丹丹, 等. 基于聚多巴胺特性构建的肿瘤靶向药物递送系统的研究进展[J]. 药学学报, 2022, 57(1): 25-35, 275. |
SU Yupei, PAN Hao, LIU Dandan, et al. Advances in polydopamine-based drug delivery systems for tumor targeting [J]. Acta Pharmaceutica Sinica, 2022, 57 (1): 25-35, 275. | |
30 | CHANG Danfeng, GAO Yongfeng, WANG Lijun, et al. Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy[J]. Journal of Colloid and Interface Science, 2016, 463: 279-287. |
31 | 李影. 磁性介孔二氧化硅的聚合物包覆改性及应用研究[D]. 合肥: 安徽大学, 2015. |
LI Ying. Polymer coated modification and application research of magnetic mesoporous silica [D]. Hefei: Anhui University, 2015. | |
32 | 贾尚宁. 核壳式介孔硅Fe3O4磁性纳米复合物的制备及载药性能[D]. 太原: 山西医科大学, 2019. |
JIA Shangning. Preparation and drug loading properties of core-shell mesoporous silica Fe3O4 nanocomposites[D]. Taiyuan: Shanxi Medical University, 2019. | |
33 | 张婷婷. 功能化磁性纳米材料的合成及其载药性能研究[D]. 宁波: 宁波大学, 2019. |
ZHANG Tingting. Synthesis and drug-loading properties of functionalized magnetic nanomaterials[D]. Ningbo: Ningbo University, 2019. | |
34 | 王帅. 介孔二氧化硅纳米材料功能化和对药物的搭载及体外释放研究[D]. 贵阳: 贵州大学, 2020. |
WANG Shuai. Functionalization mesoporous silica nanomaterials, drug loading and release studies in vitro [D]. Guiyang: Guizhou University, 2020. | |
35 | 彭林娜. 透明质酸和聚多巴胺包裹的载药介孔二氧化钛纳米系统用于肿瘤的多功能联合治疗[D]. 重庆: 重庆医科大学, 2020. |
PENG Linna. A novel mesoporous titanium dioxide nanosystem coated with hyaluroic acid and polydopamine shell for multifunctional combination therapy of tumors [D]. Chongqing: Chongqing Medical University, 2020. | |
36 | WANG Yang, ZHAO Ruibo, WANG Shibing, et al. In vivo dual-targeted chemotherapy of drug resistant cancer by rationally designed nanocarrier [J]. Biomaterials, 2016, 75: 71-81. |
37 | TENG Yun, DU Yimeng, SHI Jue, et al. Magnetic iron oxide nanoparticle-hollow mesoporous silica Spheres: Fabrication and potential application in drug delivery [J]. Current Applied Physics, 2020, 20(2): 320-325. |
[1] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[2] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[3] | 刘念, 陈葵, 武斌, 纪利俊, 吴艳阳, 韩金玲. 蛋黄-壳介孔磁性炭微球的制备及其对红霉素的高效吸附[J]. 化工进展, 2023, 42(5): 2724-2732. |
[4] | 李云闯, 谢方明, 席亚男, 万新月, 孙玉虎, 赵永峰, 李根, 刘宏海, 高雄厚, 刘洪涛. 高水热稳定性介孔分子筛的低成本合成研究进展[J]. 化工进展, 2023, 42(4): 1877-1884. |
[5] | 杨泛明, 贺国文. 颗粒状NiO的制备及其电化学性能和CO2吸附性能[J]. 化工进展, 2023, 42(2): 907-916. |
[6] | 唐朝春, 王顺藤, 黄从新, 冯文涛, 阮以宣, 史纯菁. 介孔金属有机框架材料吸附水中重金属离子研究进展[J]. 化工进展, 2022, 41(6): 3263-3278. |
[7] | 狄冠丞, 周强, 陶信, 尚瑜, 宋涛, 卢平, 徐贵玲. 掺硫介孔炭的制备及其汞脱除特性[J]. 化工进展, 2022, 41(5): 2761-2769. |
[8] | 刘瑞琴, 孟凡会, 王立言, 张鹏, 张俊峰, 谭猗生, 李忠. 有序介孔CuCoZr催化剂的制备及其催化合成气制乙醇及高级醇性能[J]. 化工进展, 2022, 41(11): 5870-5878. |
[9] | 赵文霞, 赵玉, 柴子茹, 张硕, 王世欣, 焦志杰. N2等离子体改性介孔TiO2的可见光催化性能及机理[J]. 化工进展, 2022, 41(11): 5820-5829. |
[10] | 张珂, 屈小虎, 朱元军, 林建英, 赵志换, 樊惠玲. 研磨法制备金属有机框架材料的新进展[J]. 化工进展, 2022, 41(10): 5465-5473. |
[11] | 付欣, 张玉苍, 李瑞松, 刘群, 郭佳益. 气溶胶辅助自组装制备中空球形二氧化硅材料的机理及应用[J]. 化工进展, 2022, 41(1): 327-335. |
[12] | 闫雪倩, 裴向军, 杜杰, 米晓慧, 白琳嵚, 马蕊, 张明宽, 钱进. Bi2O2CO3/Fe3O4磁性复合物在环境污染治理领域中的应用[J]. 化工进展, 2021, 40(6): 3515-3525. |
[13] | 吴振威, 李伟, 鄂雷, 孙佳明, 刘禹衫, 刘守新. 水热-软模板法制备介孔炭球及其应用[J]. 化工进展, 2021, 40(2): 932-948. |
[14] | 肖昱,郭宇,吴红梅,姜晓庆. 氨基功能化介孔硅吸附剂的制备及其对铬(Ⅲ)的吸附行为[J]. 化工进展, 2020, 39(1): 257-266. |
[15] | 阳鹏飞,黎杰鑫,朱春霞. 磁性纳米材料处理含铀废水的研究进展[J]. 化工进展, 2020, 39(1): 206-215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |