化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3915-3924.doi: 10.16085/j.issn.1000-6613.2021-1827
收稿日期:
2021-08-25
修回日期:
2021-11-09
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
郭宇
E-mail:2502726134@qq.com;guoyulnut@163.com
作者简介:
姜晓庆(1995—),女,硕士研究生,研究方向为化工新材料。E-mail:基金资助:
JIANG Xiaoqing(), GUO Yu(
), WU Hongmei
Received:
2021-08-25
Revised:
2021-11-09
Online:
2022-07-25
Published:
2022-07-23
Contact:
GUO Yu
E-mail:2502726134@qq.com;guoyulnut@163.com
摘要:
通过席夫碱反应将2-吡啶甲醛成功嫁接到氨基化的SBA-15介孔分子筛上,本文获得了一种新型功能化SBA-15吸附剂(N-SBA-15)。采用傅里叶变换红外光谱、X射线衍射、元素分析、扫描电子显微镜、透射电子显微镜、X射线光电子能谱、热重分析和氮气吸附-脱附等手段对N-SBA-15的表面官能团、形貌、孔道结构和表面化学性质进行了详细的表征分析。利用N-SBA-15对水溶液中的Cr(Ⅲ)进行了吸附实验,其最大吸附容量为84.3mg/g。动力学分析和等温吸附研究结果表明,N-SBA-15对Cr(Ⅲ)的吸附过程符合准二级动力学模型和Langmuir模型。吸附热力学分析表明,该吸附过程是自发的吸热过程(?G<0、?S>0、?H>0)。吸附机理分析表明该吸附过程主要是由N-SBA-15表面有机官能团与Cr(Ⅲ)的配位作用实现的。而且,N-SBA-15吸附剂经过5次吸附-脱附测试,仍然对Cr(Ⅲ)具有较高的吸附容量。
中图分类号:
姜晓庆, 郭宇, 吴红梅. 2-吡啶甲醛功能化SBA-15介孔材料的制备及其对Cr(Ⅲ)离子的吸附[J]. 化工进展, 2022, 41(7): 3915-3924.
JIANG Xiaoqing, GUO Yu, WU Hongmei. Synthesis of 2-pyridinecarboxaldehyde functionalized SBA-15 mesoporous material for the adsorption of Cr(Ⅲ) ions from aqueous solution[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3915-3924.
1 | SELVARAJ R, SANTHANAM M, SELVAMANI V, et al. A membrane electroflotation process for recovery of recyclable chromium(Ⅲ) from tannery spent liquor effluent[J]. Journal of Hazardous Materials, 2018, 346: 133-139. |
2 | CHOW Y N, LEE L K, ZAKARIA N A, et al. Phytotoxic effects of trivalent chromium-enriched water irrigation in Vigna unguiculata seedling[J]. Journal of Cleaner Production, 2018, 202: 101-108. |
3 | LIU W, YU Y X. Removal of recalcitrant trivalent chromium complexes from industrial wastewater under strict discharge standards[J]. Environmental Technology & Innovation, 2021, 23: 101644. |
4 | LIU G J, CUI C C, JIANG L, et al. Visible light-induced hydrogels towards reversible adsorption and desorption based on trivalent chromium in aqueous solution[J]. Reactive and Functional Polymers, 2021, 163: 104886. |
5 | LYU T, MA R G, KE K, et al. Synthesis of gallic acid functionalized magnetic hydrogel beads for enhanced synergistic reduction and adsorption of aqueous chromium[J]. Chemical Engineering Journal, 2021, 408: 127327. |
6 | KYZIOŁ-KOMOSIŃSKA J, AUGUSTYNOWICZ J, LASEK W, et al. Callitriche cophocarpa biomass as a potential low-cost biosorbent for trivalent chromium[J]. Journal of Environmental Management, 2018, 214: 295-304. |
7 | LATIF A, SHENG D, SUN K, et al. Remediation of heavy metals polluted environment using Fe-based nanoparticles: mechanisms, influencing factors, and environmental implications[J]. Environmental Pollution, 2020, 264:114728. |
8 | RAMALINGAM B, VENKATACHALAM S S, KIRAN M S, et al. Rationally designed shewanella oneidensis biofilm toilored graphene-magnetite hybrid nanobiocomposite as reusable living functional nanomaterial for effective removal of trivalent chromium[J]. Environmental Pollution, 2021, 278: 116847. |
9 | LI M J, MA C X, YIN X X, et al. Investigating trivalent chromium biosorption-driven extracellular polymeric substances changes of Synechocystis sp. PCC 7806 by parallel factor analysis (PARAFAC) analysis[J]. Bioresource Technology Reports, 2019, 7: 100249. |
10 | EL-SHAHAWI M S, HASSAN S S M, OTHMAN A M, et al. Retention profile and subsequent chemical speciation of chromium (Ⅲ) and (Ⅵ) in industrial wastewater samples employing some onium cations loaded polyurethane foams[J]. Microchemical Journal, 2008, 89(1): 13-19. |
11 | JIANG D M, YANG Y H, HUANG C T, et al. Removal of the heavy metal ion nickel (Ⅱ) via an adsorption method using flower globular magnesium hydroxide[J]. Journal of Hazardous Materials, 2019, 373: 131-140. |
12 | 张振国, 张铭栋, 顾平, 等. 沸石材料吸附水中放射性锶和铯的研究进展[J]. 化工进展, 2019, 38(4): 1984-1995. |
ZHANG Zhenguo, ZHANG Mingdong, GU Ping, et al. Progress in adsorption of radioactive strontium and cesium from aqueous solution on zeolite materials[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1984-1995. | |
13 | DU X, ZHANG Q, QIAO W L, et al. Controlled self-assembly of oligomers-grafted fibrous polyaniline/single zirconium phosphate nanosheet hybrids with potential-responsive ion exchange properties[J]. Chemical Engineering Journal, 2016, 302: 516-525. |
14 | MARCINIAK M, GOSCIANSKA J, FRANKOWSKI M, et al. Optimal synthesis of oxidized mesoporous carbons for the adsorption of heavy metal ions[J]. Journal of Molecular Liquids, 2019, 276: 630-637. |
15 | WU H M, XIAO Y, GUO Y, et al. Functionalization of SBA-15 mesoporous materials with 2-acetylthiophene for adsorption of Cr(Ⅲ) ions[J]. Microporous and Mesoporous Materials, 2020, 292: 109754. |
16 | RADI S, TIGHADOUINI S, MASSAOUDI M EL, et al. Thermodynamics and kinetics of heavy metals adsorption on silica particles chemically modified by conjugated β-ketoenol furan[J]. Journal of Chemical & Engineering Data, 2015, 60(10): 2915-2925. |
17 | ORTIZ-BUSTOS J, MARTÍN A, MORALES V, et al. Surface-functionalization of mesoporous SBA-15 silica materials for controlled release of methylprednisolone sodium hemisuccinate: influence of functionality type and strategies of incorporation[J]. Microporous and Mesoporous Materials, 2017, 240: 236-245. |
18 | О DUDARKO, KOBYLINSKA N, MISHRA B, et al. Facile strategies for synthesis of functionalized mesoporous silicas for the removal of rare-earth elements and heavy metals from aqueous systems[J]. Microporous and Mesoporous Materials, 2021, 315: 110919. |
19 | LI S L, LI S Q, WEN N, et al. Highly effective removal of lead and cadmium ions from wastewater by bifunctional magnetic mesoporous silica[J]. Separation and Purification Technology, 2021, 265: 118341. |
20 | DINDAR M H, YAFTIAN M R, ROSTAMNIA S. Potential of functionalized SBA-15 mesoporous materials for decontamination of water solutions from Cr(Ⅵ), As(Ⅴ) and Hg(Ⅱ) ions[J]. Journal of Environmental Chemical Engineering, 2015, 3(2): 986-995. |
21 | 肖昱, 郭宇, 吴红梅, 等. 氨基功能化介孔硅吸附剂的制备及其对铬(Ⅲ)的吸附行为[J]. 化工进展, 2020, 39(1): 257-266. |
XIAO Yu, GUO Yu, WU Hongmei, et al. Adsorption of chromium(Ⅲ) ions with amino functionalized mesoporous silica adsorbent[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 257-266. | |
22 | LIU S, CUI H Z, LI Y L, et al. Bis-pyrazolyl functionalized mesoporous SBA-15 for the extraction of Cr(Ⅲ) and detection of Cr(Ⅵ) in artificial jewelry samples[J]. Microchemical Journal, 2017, 131: 130-136. |
23 | CORREIA L M M, SOLIMAN M M A, GRANADEIRO C M, et al. Vanadium C-scorpionate supported on mesoporous aptes-functionalized SBA-15 as catalyst for the peroxidative oxidation of benzyl alcohol[J]. Microporous and Mesoporous Materials, 2021, 320: 111111. |
24 | RIBEIRO S O, GRANADEIRO C M, ALMEIDA P L, et al. Effective zinc-substituted keggin composite to catalyze the removal of sulfur from real diesels under a solvent-free system[J]. Industrial & Engineering Chemistry Research, 2019, 58(40): 18540-18549. |
25 | ZHOU Y, BAO R L, YUE B, et al. Synthesis, characterization and catalytic application of SBA-15 immobilized rare earth metal sandwiched polyoxometalates[J]. Journal of Molecular Catalysis A: Chemical, 2007, 270(1/2): 50-55. |
26 | HAO S Y, ZHONG Y J, PEPE F, et al. Adsorption of Pb2+ and Cu2+ on anionic surfactant-templated amino-functionalized mesoporous silicas[J]. Chemical Engineering Journal, 2012, 189/190: 160-167. |
27 | GOLLAKOTA A R K, MUNAGAPATI V S, SHADANGI K P, et al. Encapsulating toxic Rhodamine 6G dye, and Cr(Ⅵ) metal ions from liquid phase using AlPO4-5 molecular sieves. Preparation, characterization, and adsorption parameters[J]. Journal of Molecular Liquids, 2021, 336: 116549. |
28 | HERNÁNDEZ-MORALES V, NAVA R, ACOSTA-SILVA Y J, et al. Adsorption of lead (Ⅱ) on SBA-15 mesoporous molecular sieve functionalized with-NH2 groups[J]. Microporous and Mesoporous Materials, 2012, 160: 133-142. |
29 | LIU C, JIN R N, OUYANG X K, et al. Adsorption behavior of carboxylated cellulose nanocrystal-polyethyleneimine composite for removal of Cr(Ⅵ) ions[J]. Applied Surface Science, 2017, 408: 77-87. |
30 | SALMANI M H, EHRAMPOUSH M H, ESLAMI H, et al. Synthesis, characterization and application of mesoporous silica in removal of cobalt ions from contaminated water[J]. Groundwater for Sustainable Development, 2020, 11: 100425. |
31 | MAHMOUDI F, AMINI M M, SILLANPÄÄ M. Hydrothermal synthesis of novel MIL-100(Fe)@SBA-15 composite material with high adsorption efficiency towards dye pollutants for wastewater remediation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 116: 303-313. |
32 | SHARMA R, KUMAR D. Adsorption of Cr(Ⅲ) and Cu(Ⅱ) on hydrothermally synthesized graphene oxide-calcium-zinc nanocomposite[J]. Journal of Chemical & Engineering Data, 2018, 63(12): 4560-4572. |
33 | 张永德, 黄松涛, 罗学刚, 等. 膨化稻壳对铀及伴生重金属离子的吸附机理[J]. 化工进展, 2016, 35(9): 2707-2714. |
ZHANG Yongde, HUANG Songtao, LUO Xuegang, et al. Adsorption characteristics and mechanism of U(Ⅵ) and associated heavy metals on expanded rice husk[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2707-2714. | |
34 | 王重庆, 王晖, 江小燕, 等. 生物炭吸附重金属离子的研究进展[J]. 化工进展, 2019, 38(1): 692-706. |
WANG Chongqing, WANG Hui, JIANG Xiaoyan, et al. Research advances on adsorption of heavy metals by biochar[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 692-706. | |
35 | DENG S B, TING Y P. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(Ⅵ) anions: sorption capacity and uptake mechanisms[J]. Environmental Science & Technology, 2005, 39(21): 8490-8496. |
36 | LEI Z M, AN Q D, FAN Y, et al. Monolithic magnetic carbonaceous beads for efficient Cr(Ⅵ) removal from water[J]. New Journal of Chemistry, 2016, 40(2): 1195-1204. |
37 | PARAB H, JOSHI S, SHENOY N, et al. Determination of kinetic and equilibrium parameters of the batch adsorption of Co(Ⅱ), Cr(Ⅲ) and Ni(Ⅱ) onto coir pith[J]. Process Biochemistry, 2006, 41(3): 609-615. |
38 | QIU Y, ZHANG Q, GAO B, et al. Removal mechanisms of Cr(Ⅵ) and Cr(Ⅲ) by biochar supported nanosized zero-valent iron: synergy of adsorption, reduction and transformation[J]. Environmental Pollution, 2020, 265: 115018. |
39 | ARIM A L, QUINA M J, GANDO-FERREIRA L M. Uptake of trivalent chromium from aqueous solutions by xanthate pine bark: characterization, batch and column studies[J]. Process Safety and Environmental Protection, 2019, 121:374-386. |
40 | WANG J H, MAO M, ATIF S, et al. Adsorption behavior and mechanism of aqueous Cr(Ⅲ) and Cr(Ⅲ)-EDTA chelates on DTPA-chitosan modified Fe3O4@SiO2 [J]. Reactive and Functional Polymers, 2020, 156: 104720. |
[1] | 肖毅, 王兵兵, 于旭亮, 王鑫, 蔡汉友. 换热壁面碳酸钙吸附与脱水行为的分子动力学[J]. 化工进展, 2022, 41(8): 4077-4085. |
[2] | 祖梅, 许海涛, 谢炜, 程海峰. 金属有机框架材料的水稳定性及吸水应用进展[J]. 化工进展, 2022, 41(8): 4254-4267. |
[3] | 张雨珂, 刘倩, 段媛媛, 赵英杰, 崔阳, 史利娟, 李向远, 李剑川, 范海明, 易群. 基于MOFs材料的低碳烃(C1~C3)分离研究进展[J]. 化工进展, 2022, 41(8): 4288-4302. |
[4] | 王震, 闫霆, 霍英杰. 氯化锰/氨热化学吸附储热的特性[J]. 化工进展, 2022, 41(8): 4425-4431. |
[5] | 单清雯, 张娟, 王亚娟, 刘文强. 聚合离子液体的合成及其吸附脱硫性能[J]. 化工进展, 2022, 41(8): 4571-4579. |
[6] | 生丽莎, 陈振乾. 多孔液体设计制备及性能分析研究进展[J]. 化工进展, 2022, 41(7): 3660-3675. |
[7] | 王胜楠, 陈康, 郑旭. 吸附式空气取水系统用吸湿材料研究进展[J]. 化工进展, 2022, 41(7): 3636-3647. |
[8] | 杨靖, 范议议, 王赛娣, 王福凯, 孟秀霞, 杨乃涛, 刘少敏. 二维层状双金属氢氧化物在去除磷酸盐中的应用[J]. 化工进展, 2022, 41(7): 3689-3706. |
[9] | 段正洋, 胡柠檬, 李天国. 黄原酸改性交联面包酵母的制备及对Pb(Ⅱ)的吸附特性[J]. 化工进展, 2022, 41(7): 3925-3937. |
[10] | 池成龙, 贾爱忠, 孙道来, 赵新强, 王延吉. 表面离子印迹聚合物金属离子吸附材料研究进展[J]. 化工进展, 2022, 41(7): 3758-3769. |
[11] | 武传朋, 李传坤, 杨哲, 苟成冬, 高新江. 固体吸附材料脱除SO2研究进展[J]. 化工进展, 2022, 41(7): 3840-3854. |
[12] | 邱琪丽, 蒋旭光. 垃圾焚烧飞灰在污染物控制领域中的应用探讨[J]. 化工进展, 2022, 41(7): 3855-3864. |
[13] | 王泽鹏, 苑中显, 王洁, 文鑫, 刘一默. 硅胶粒径对太阳能吸附制冷系统性能的影响[J]. 化工进展, 2022, 41(7): 3545-3552. |
[14] | 常炜, 史秋兰, 赵正阳, 王瑞婷, 王志福, 赵俭波. 高内相乳液法制备聚丙烯酰胺多孔水凝胶及应用[J]. 化工进展, 2022, 41(7): 3832-3839. |
[15] | 黄平安, 徐俊, 杨宇轩, 潘宇涵, 王新文, 黄群星. 球磨改性热解炭吸附磺胺甲![]() |
|