化工进展 ›› 2021, Vol. 40 ›› Issue (S2): 162-175.DOI: 10.16085/j.issn.1000-6613.2021-0557
金春江1,2,3(), 王鲁元1,2(), 陈惠敏3, 程星星4, 张兴宇2, 孙荣峰1,2, 耿文广1,2, 仇洪波5
收稿日期:
2021-03-19
修回日期:
2021-04-24
出版日期:
2021-11-12
发布日期:
2021-11-12
通讯作者:
王鲁元
作者简介:
金春江(1994—),男,硕士研究生,研究方向为VOCs环保治理及炭材料制备。E-mail:JIN Chunjiang1,2,3(), WANG Luyuan1,2(), CHEN Huimin3, CHENG Xingxing4, ZHANG Xingyu2, SUN Rongfeng1,2, GENG Wenguang1,2, QIU Hongbo5
Received:
2021-03-19
Revised:
2021-04-24
Online:
2021-11-12
Published:
2021-11-12
Contact:
WANG Luyuan
摘要:
以CO2为活化气氛,通过一步快速热解活化法从黑山煤粉与生物质混合物中制取活性炭。讨论了不同质量比率、活化温度和CO2浓度对活性炭比表面积的影响。通过N2吸附(BET)、扫描电镜(SEM)、拉曼光谱(Raman)和红外光谱(FTIR)对活性炭的性能进行了表征。确定了制备活性炭的最佳条件为活化温度900℃、质量比1、CO2体积分数30%、活化时间120min时,活性炭的比表面积和孔容最大,分别为901m2/g和0.39cm3/g。最后,用乙酸乙酯吸附量验证了其吸附性能,最大累积吸附量为766.51mg/g。
中图分类号:
金春江, 王鲁元, 陈惠敏, 程星星, 张兴宇, 孙荣峰, 耿文广, 仇洪波. 煤-生物质基活性炭成孔机制及其吸附乙酸乙酯的性能[J]. 化工进展, 2021, 40(S2): 162-175.
JIN Chunjiang, WANG Luyuan, CHEN Huimin, CHENG Xingxing, ZHANG Xingyu, SUN Rongfeng, GENG Wenguang, QIU Hongbo. Pore forming mechanism and ethyl acetate adsorption performance of coal-biomass based activated carbon[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 162-175.
原料 | 工业分析/% | 元素分析/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳 | 碳 | 氢 | 氮 | 硫 | 氧 | 水分 | |
黑山煤 | 3.68 | 35.32 | 38.83 | 5.36 | 83.46 | 54.10 | 4.84 | 30.7 | 0.53 | 0.79 |
野生桃核 | 6.84 | 71.43 | 80.32 | 4.23 | 17.5 | 44.7 | 5.08 | 37.74 | 0.88 | 0.53 |
表1 黑山煤和野生桃核的工业分析和元素分析
原料 | 工业分析/% | 元素分析/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳 | 碳 | 氢 | 氮 | 硫 | 氧 | 水分 | |
黑山煤 | 3.68 | 35.32 | 38.83 | 5.36 | 83.46 | 54.10 | 4.84 | 30.7 | 0.53 | 0.79 |
野生桃核 | 6.84 | 71.43 | 80.32 | 4.23 | 17.5 | 44.7 | 5.08 | 37.74 | 0.88 | 0.53 |
可变条件 | 取值 | |||
---|---|---|---|---|
煤与生物质质量比 | 0.2 | 0.5 | 1 | 1.5 |
温度/℃ | 600 | 700 | 800 | 900 |
CO2含量/% | 10 | 20 | 30 |
表2 设计对比试验条件
可变条件 | 取值 | |||
---|---|---|---|---|
煤与生物质质量比 | 0.2 | 0.5 | 1 | 1.5 |
温度/℃ | 600 | 700 | 800 | 900 |
CO2含量/% | 10 | 20 | 30 |
1 | CHINGOMBE P, SAHA B, WAKEMAN R J. Surface modification and characterisation of a coal-based activated carbon[J]. Carbon, 2005, 43(15): 3132-3143. |
2 | LI L, QUINLIVAN P A, KNAPPE D R U. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution[J]. Carbon, 2002, 40(12): 2085-2100. |
3 | LI L, LIU S Q, LIU J X. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal[J]. Journal of Hazardous Materials, 2011, 192(2): 683-690. |
4 | ANIA C O, PARRA J B, PIS J J. Effect of texture and surface chemistry on adsorptive capacities of activated carbons for phenolic compounds removal[J]. Fuel Processing Technology, 2002, 77/78: 337-343. |
5 | AN D H, SUN X F, CHENG X X, et al. Investigation on mercury removal and recovery based on enhanced adsorption by activated coke[J]. Journal of Hazardous Materials, 2020, 384: 121354. |
6 | PUREVSUREN B, LIOU Y H, DAVAAJAV Y, et al. Investigation of adsorption of methylene blue from aqueous phase onto coal-based activated carbons[J]. Journal of the Chinese Institute of Engineers, 2017, 40(4): 355-360. |
7 | PREMARATHNA K S D, RAJAPAKSHA A U, SARKAR B, et al. Biochar-based engineered composites for sorptive decontamination of water: a review[J]. Chemical Engineering Journal, 2019, 372: 536-550. |
8 | PENA J, VILLOT A, GERENTE C. Pyrolysis chars and physically activated carbons prepared from buckwheat husks for catalytic purification of syngas[J]. Biomass and Bioenergy, 2020, 132: 105435. |
9 | 张振, 王涛, 马春元, 等. 低氧快速热解过程中氧气体积分数对活性焦孔隙结构的影响[J]. 煤炭学报, 2014, 39(10): 2107-2113. |
ZHANG Zhen, WANG Tao, MA Chunyuan, et al. Effect of oxygen concentration on activated char pore structure during low oxygen fast pyrolysis[J]. Journal of China Coal Society, 2014, 39(10): 2107-2113. | |
10 | 史蕊, 李依丽, 尹晶, 等. 玉米秸秆活性炭的制备及其吸附动力学研究[J]. 环境工程学报, 2014, 8(8): 3428-3432. |
SHI Rui, LI Yili, YIN Jing, et al. Preparation of activated carbon from corn straw and research of adsorption kinetics[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3428-3432. | |
11 | LI Z, LIANG Q, YANG C, et al. Convenient preparation of nitrogen-doped activated carbon from Macadamia nutshell and its application in supercapacitor[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(18): 13880-13887. |
12 | FU J P, ZHOU B X, ZHANG Z, et al. One-step rapid pyrolysis activation method to prepare nanostructured activated coke powder[J]. Fuel, 2020, 262: 116514. |
13 | WANG L J, SUN F, GAO J H, et al. Adjusting the porosity of coal-based activated carbons based on a catalytic physical activation process for gas and liquid adsorption[J]. Energy & Fuels, 2018, 32(2): 1255-1264. |
14 | MENG F R, XIAO K M, LI X C, et al. Characteristics of chars prepared by low-temperature co-pyrolysis of lignite and biomass[J]. Combustion Science and Technology, 2020, 192(3): 513-530. |
15 | 陈璐, 张秀惠, 李向尧, 等. 二氧化碳活化制备杏壳活性炭及对其孔径影响[J]. 广州化工, 2019, 47(20): 87-89, 102. |
CHEN Lu, ZHANG Xiuhui, LI Xiangyao, et al. Preparation of apricot shell activated carbon by carbon dioxide activation and effect on its pore size[J]. Guangzhou Chemical Industry, 2019, 47(20): 87-89, 102. | |
16 | 李大伟, 田原宇, 郝俊辉, 等. 炭活化一步法制备豆渣基极微孔活性炭[J]. 农业工程学报, 2015, 31(19): 309-314. |
LI Dawei, TIAN Yuanyu, HAO Junhui, et al. Preparation of N-doped ultramicropore-containing active carbons from waste soybean dreg by one-step carbonization/activation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(19): 309-314. | |
17 | FU J P, JIN C J, ZHANG J R, et al. Pore structure and VOCs adsorption characteristics of activated coke powders derived via one-step rapid pyrolysis activation method[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(5): e2503. |
18 | 张东东, 易川, 金哲, 等. 活性炭吸附乙酸乙酯的动态吸附和动力学研究[J]. 环境科学与技术, 2018, 41(4): 17-21, 115. |
ZHANG Dongdong, YI Chuan, JIN Zhe, et al. Dynamic adsorption and kinetics of activated carbon adsorbing ethyl acetate[J]. Environmental Science & Technology, 2018, 41(4): 17-21, 115. | |
19 | 解强, 姚鑫, 杨川, 等. 压块工艺条件下煤种对活性炭孔结构发育的影响[J]. 煤炭学报, 2015, 40(1): 196-202. |
XIE Qiang, YAO Xin, YANG Chuan, et al. Effect of coal type on pore structure development of activated carbon under briquetting process[J]. Journal of China Coal Society, 2015, 40(1): 196-202. | |
20 | MAO Y B, DONG L, DONG Y P, et al. Fast co-pyrolysis of biomass and lignite in a micro fluidized bed reactor analyzer[J]. Bioresource Technology, 2015, 181: 155-162. |
21 | 程松, 张利波, 夏洪应, 等. 响应曲面法优化CO2活化制备夏威夷坚果壳基活性炭[J]. 环境工程学报, 2015, 9(9): 4495-4502. |
CHENG Song, ZHANG Libo, XIA Hongying, et al. Preparation of activated carbon from Hawaii nut shell via CO2 activation using response surface methodology[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4495-4502. | |
22 | LI S D, CHEN X L, WANG L, et al. Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor[J]. Bioresource Technology, 2013, 148: 24-29. |
23 | TOPTAS A, YILDIRIM Y, DE DUMAN G, et al. Combustion behavior of different kinds of torrefied biomass and their blends with lignite[J]. Bioresource Technology, 2015, 177: 328-336. |
24 | WU Z Q, LI Y W, XU D H, et al. Co-pyrolysis of lignocellulosic biomass with low-quality coal: optimal design and synergistic effect from gaseous products distribution[J]. Fuel, 2019, 236: 43-54. |
25 | 曲健林, 韩敏, 张秀丽, 等. 棉杆活性炭负载Co-B催化剂催化硼氢化钠水解制氢的性能[J]. 化工学报, 2015, 66(1): 105-113. |
QU Jianlin, HAN Min, ZHANG Xiuli, et al. Hydrogen generation by sodium borohydride hydrolysis on Co-B catalysts supported on cotton stalk-based activated carbon[J]. CIESC Journal, 2015, 66(1): 105-113. | |
26 | 王成勇, 石开仪, 邓红江, 等. 煤岩显微组分对活性炭表面性质的协同效应机理[J]. 煤炭转化, 2020, 43(5): 82-87. |
WANG Chengyong, SHI Kaiyi, DENG Hongjiang, et al. Synergistic mechanism of coal macerals on the surface properties of activated carbon[J]. Coal Conversion, 2020, 43(5): 82-87. | |
27 | 刘冬冬, 高继慧, 吴少华, 等. FeCl3和空气预氧化对煤焦结构及活化过程中孔隙生成的影响[J]. 煤炭学报, 2017, 42(4): 1034-1042. |
LIU Dongdong, GAO Jihui, WU Shaohua, et al. Effects of FeCl3 and air pre-oxidation on char structure and pore development during activation[J]. Journal of China Coal Society, 2017, 42(4): 1034-1042. | |
28 | YOON I H, MENG X G, WANG C, et al. Perchlorate adsorption and desorption on activated carbon and anion exchange resin[J]. Journal of Hazardous Materials, 2009, 164(1): 87-94. |
29 | LI X J, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12/13): 1700-1707. |
30 | 刘冬冬, 高继慧, 吴少华, 等. 闪热解对烟煤焦结构及活化过程孔隙生成的影响[J]. 煤炭学报, 2016, 41(11): 2867-2875. |
LIU Dongdong, GAO Jihui, WU Shaohua, et al. Effect of flash pyrolysis on bituminous char structure and pore development during activation[J]. Journal of China Coal Society, 2016, 41(11): 2867-2875. | |
31 | 廖希凯, 满小媛, 宁寻安, 等. 炭化温度对废旧布袋制备活性炭性能的影响及其表征[J]. 环境科学学报, 2015, 35(11): 3775-3780. |
LIAO Xikai, MAN Xiaoyuan, NING Xun’an, et al. Effects of carbonization temperature on characteristics of activated carbon from waste filter bag[J]. Acta Scientiae Circumstantiae, 2015, 35(11): 3775-3780. | |
32 | 蔡政汉, 林咏梅, 陈翠霞, 等. 椰壳碎炭制备高强度柱状颗粒活性炭试验[J]. 林业工程学报, 2016, 1(4): 74-79. |
CAI Zhenghan, LIN Yongmei, CHEN Cuixia, et al. Preparation of high strength granular activated carbon with powder coconut shell charcoal[J]. Journal of Forestry Engineering, 2016, 1(4): 74-79. | |
33 | SHANG T X, REN R Q, ZHU Y M, et al. Oxygen- and nitrogen-co-doped activated carbon from waste particleboard for potential application in high-performance capacitance[J]. Electrochimica Acta, 2015, 163: 32-40. |
34 | 郭秉霖, 侯彩霞, 樊丽华, 等. 萃取温度对无灰煤结构及煤基活性炭电化学性能的影响[J]. 无机化学学报, 2018, 34(9): 1615-1624. |
GUO Binglin, HOU Caixia, FAN Lihua, et al. Effect of extraction temperature on hyper-coal structure and electrochemistry of coal-based activated carbon[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(9): 1615-1624. | |
35 | 刘伟, 李立清, 姚小龙, 等. 活性炭孔隙结构在其丙酮吸附中的作用[J]. 中南大学学报(自然科学版), 2012, 43(4): 1574-1583. |
LIU Wei, LI Liqing, YAO Xiaolong, et al. Role of pore structure of activated carbon in adsorption for acetone[J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1574-1583. | |
36 | LIEVENS C, MOURANT D, HE M, et al. An FT-IR spectroscopic study of carbonyl functionalities in bio-oils[J]. Fuel, 2011, 90(11): 3417-3423. |
37 | 姜可茂, 吴琪琳. 高比表面积生物质活性炭的制备及其电化学性能研究[J]. 功能材料, 2017, 48(11): 11153-11156, 11160. |
JIANG Kemao, WU Qilin. Preparation and electrochemical performance of activated carbon with high specific surface area[J]. Journal of Functional Materials, 2017, 48(11): 11153-11156, 11160. | |
38 | YANG J, QIU K Q. Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal[J]. Chemical Engineering Journal, 2010, 165(1): 209-217. |
39 | LAINE J, CALAFAT A, LABADY M. Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid[J]. Carbon, 1989, 27(2): 191-195. |
40 | 李大伟, 朱锡锋. CO2活化-碱液沸煮制备高介孔率的稻壳活性炭[J]. 新型炭材料, 2013, 28(5): 363-368. |
LI Dawei, ZHU Xifeng. Rice husk-based activated carbons with high mesoporosity prepared by a combination of CO2 activation and boiling in an alkaline solution[J]. New Carbon Materials, 2013, 28(5): 363-368. | |
41 | KIM Y, OH J I, VITHANAGE M, et al. Modification of biochar properties using CO2[J]. Chemical Engineering Journal, 2019, 372: 383-389. |
42 | CHEN X J, GUO Y X, CUI J L, et al. Activated carbon preparation with the addition of coke-making by-product—coke powder: texture evolution and mechanism[J]. Journal of Cleaner Production, 2019, 237: 117812. |
43 | 邢宝林, 黄光许, 谌伦建, 等. 高品质低阶煤基活性炭的制备与表征[J]. 煤炭学报, 2013, 38(S1): 217-222. |
XING Baolin, HUANG Guangxu, CHEN Lunjian, et al. Preparation and characterization of high quality low-rank coal based activated carbon[J]. Journal of China Coal Society, 2013, 38(S1): 217-222. | |
44 | 张小兵, 郇璇, 张航, 等. 不同煤体结构煤基活性炭微观结构与甲烷吸附性能[J]. 中国矿业大学学报, 2017, 46(1): 155-161. |
ZHANG Xiaobing, HUAN Xuan, ZHANG Hang, et al. Microstructure and methane adsorption of coal-based activated carbons with different coal body structures[J]. Journal of China University of Mining & Technology, 2017, 46(1): 155-161. | |
45 | CASTRO-MUÑIZ A, SUÁREZ-GARCÍA F, MARTÍNEZ-ALONSO A, et al. Activated carbon fibers with a high content of surface functional groups by phosphoric acid activation of PPTA[J]. Journal of Colloid and Interface Science, 2011, 361(1): 307-315. |
46 | 杨坤彬, 彭金辉, 夏洪应, 等. CO2活化制备椰壳基活性炭[J]. 炭素技术, 2010, 29(1): 20-23. |
YANG Kunbin, PENG Jinhui, XIA Hongying, et al. Preparation of coconut shells-based activated carbons with CO2 activation[J]. Carbon Techniques, 2010, 29(1): 20-23. | |
47 | YI S, HE X M, LIN H T, et al. Synergistic effect in low temperature co-pyrolysis of sugarcane bagasse and lignite[J]. Korean Journal of Chemical Engineering, 2016, 33(10): 2923-2929. |
48 | KILDUFF J E, KARANFIL T, WEBER W J. Competitive interactions among components of humic acids in granular activated carbon adsorption systems: effects of solution chemistry[J]. Environmental Science & Technology, 1996, 30(4): 1344-1351. |
49 | 李立清, 宋剑飞, 孙政, 等. 三种VOCs物性对其在活性炭上吸附行为的影响[J]. 化工学报, 2011, 62(10): 2784-2790. |
LI Liqing, SONG Jianfei, SUN Zheng, et al. Effects of properties of three VOCs on activated carbon adsorption[J]. CIESC Journal, 2011, 62(10): 2784-2790. | |
50 | RODRÍGUEZ-REINOSO F, MOLINA-SABIO M, GONZÁLEZ M T. The use of steam and CO2 as activating carbons[J]. Carbon, 1995, 33(1):15-23. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[8] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[9] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[10] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[11] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[12] | 宋伟涛, 宋慧平, 范朕连, 樊飙, 薛芳斌. 粉煤灰在防腐涂料中的研究进展[J]. 化工进展, 2023, 42(9): 4894-4904. |
[13] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[14] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[15] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |