化工进展 ›› 2021, Vol. 40 ›› Issue (10): 5678-5691.DOI: 10.16085/j.issn.1000-6613.2020-2203
收稿日期:
2020-11-04
修回日期:
2020-12-22
出版日期:
2021-10-10
发布日期:
2021-10-25
通讯作者:
尹进华
作者简介:
王犇(1970—),男,博士,副教授,硕士生导师,研究方向为安全科学、化工过程强化。E-mail:基金资助:
WANG Ben1(), WANG Chao1, YIN Jinhua2()
Received:
2020-11-04
Revised:
2020-12-22
Online:
2021-10-10
Published:
2021-10-25
Contact:
YIN Jinhua
摘要:
邻氨基苯甲酸甲酯(MA)的重氮盐是一种典型的重氮化合物,因其具有高化学选择性可高效合成结构复杂分子被广泛应用于现代有机合成领域。传统半间歇合成工艺中的固有缺陷以及MA重氮盐的潜在爆炸性,限制了其在工业规模上的应用。本文基于此提出了在“心形结构”的高通量微通道反应器内合成MA重氮盐的连续流工艺。在单因素实验的基础上,采用Box-Behnken design(BBD)中心组合原理构建响应面模型对工艺进行优化,研究了不同反应条件之间交互效应对反应的影响并与实验室规模的半间歇合成工艺进行了比较。结果表明,微反应器内连续重氮化合成工艺对降低因素交互效应、提高工艺可控性、抑制平行副反应有显著的效果。经优化后的最佳工艺条件为n(MA)∶n(亚硝酸钠)∶n(盐酸)=1∶1.15∶2.67,反应温度为34.62℃,停留时间为45.07s,在此条件下MA重氮盐收率可达92%,相比于半间歇合成工艺提高了10%。这种新的合成方式可有效解决传统半间歇工艺中重氮化合成体系对温度的高敏感性,避免了反应温度控制困难、高潜在热失控风险带来的安全隐患。
中图分类号:
王犇, 王超, 尹进华. 微反应器内邻氨基苯甲酸甲酯的连续重氮化工艺[J]. 化工进展, 2021, 40(10): 5678-5691.
WANG Ben, WANG Chao, YIN Jinhua. Continuous-flow diazotization of methyl anthranilate in microreactor system[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5678-5691.
水平 | 因素 | |||
---|---|---|---|---|
A | B | C | D | |
-1 | 1∶1.0 | 1∶2.4 | 25℃ | 30s |
0 | 1∶1.1 | 1∶2.6 | 35℃ | 40s |
1 | 1∶1.2 | 1∶2.8 | 45℃ | 50s |
表1 微通道连续流实验因素及水平
水平 | 因素 | |||
---|---|---|---|---|
A | B | C | D | |
-1 | 1∶1.0 | 1∶2.4 | 25℃ | 30s |
0 | 1∶1.1 | 1∶2.6 | 35℃ | 40s |
1 | 1∶1.2 | 1∶2.8 | 45℃ | 50s |
水平 | 因素 | |||
---|---|---|---|---|
A | B | C | D | |
-1 | 1∶1.2 | 1∶2.8 | 5℃ | 10min |
0 | 1∶1.3 | 1∶3.0 | 15℃ | 15min |
1 | 1∶1.4 | 1∶3.2 | 25℃ | 20min |
表2 半间歇实验因素及水平
水平 | 因素 | |||
---|---|---|---|---|
A | B | C | D | |
-1 | 1∶1.2 | 1∶2.8 | 5℃ | 10min |
0 | 1∶1.3 | 1∶3.0 | 15℃ | 15min |
1 | 1∶1.4 | 1∶3.2 | 25℃ | 20min |
编号 | 因素编码值 | 连续收率/% | 半间歇收率/% | |||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | 实测 | 预测 | 实测 | 预测 | |
1 | 0 | 0 | 0 | 0 | 90.7 | 90.40 | 80.5 | 80.44 |
2 | -11 | 0 | -11 | 0 | 82.5 | 82.66 | 68.5 | 68.11 |
3 | -11 | 1 | 0 | 0 | 87.8 | 87.58 | 78.0 | 77.98 |
4 | 1 | -11 | 0 | 0 | 88.4 | 87.88 | 78.2 | 78.08 |
5 | 0 | 0 | -11 | -11 | 75.6 | 74.77 | 62.4 | 62.92 |
6 | 0 | 0 | 1 | 1 | 84.3 | 84.40 | 71.7 | 71.05 |
7 | -11 | -11 | 0 | 0 | 83.2 | 82.95 | 71.1 | 71.25 |
8 | -11 | 0 | 0 | 1 | 86.8 | 86.68 | 76.2 | 76.20 |
9 | 0 | 0 | 0 | 0 | 90.0 | 90.40 | 80.1 | 80.44 |
10 | -11 | 0 | 1 | 0 | 83.9 | 84.23 | 69.8 | 69.65 |
11 | 0 | 1 | 1 | 0 | 88.2 | 88.21 | 76.7 | 77.10 |
12 | 0 | -11 | 0 | -11 | 79.2 | 79.51 | 73.4 | 72.98 |
13 | 1 | 0 | -11 | 0 | 85.5 | 85.39 | 69.8 | 69.80 |
14 | 1 | 0 | 0 | -11 | 82.3 | 82.94 | 76.9 | 77.19 |
15 | 1 | 1 | 0 | 0 | 90.2 | 89.72 | 80.4 | 80.12 |
16 | 0 | 1 | 0 | 1 | 90.1 | 90.01 | 80.6 | 80.86 |
17 | -11 | 0 | 0 | -11 | 79.7 | 79.81 | 72.3 | 72.55 |
18 | 0 | 1 | 0 | -11 | 82.5 | 82.99 | 77.4 | 77.26 |
19 | 0 | 0 | -11 | 1 | 89.0 | 88.98 | 74.5 | 74.87 |
20 | 1 | 0 | 1 | 0 | 88.5 | 88.56 | 77.0 | 77.23 |
21 | 0 | 0 | 0 | 0 | 90.9 | 90.40 | 80.1 | 80.44 |
22 | 0 | -11 | -11 | 0 | 82.1 | 82.61 | 68.2 | 68.09 |
23 | 0 | -11 | 0 | 1 | 87.3 | 87.03 | 76.4 | 76.38 |
24 | 0 | 0 | 0 | 0 | 90.1 | 90.40 | 80.7 | 80.44 |
25 | 0 | 0 | 1 | -11 | 84.8 | 84.08 | 76.5 | 76.00 |
26 | 0 | -11 | 1 | 0 | 84.1 | 84.33 | 69.9 | 70.42 |
27 | 0 | 0 | 0 | 0 | 90.3 | 90.40 | 80.8 | 80.44 |
28 | 0 | 1 | -11 | 0 | 84.9 | 85.19 | 70.4 | 70.17 |
29 | 1 | 0 | 0 | 1 | 90.2 | 90.61 | 80.5 | 80.54 |
表3 实验设计矩阵及响应值
编号 | 因素编码值 | 连续收率/% | 半间歇收率/% | |||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | 实测 | 预测 | 实测 | 预测 | |
1 | 0 | 0 | 0 | 0 | 90.7 | 90.40 | 80.5 | 80.44 |
2 | -11 | 0 | -11 | 0 | 82.5 | 82.66 | 68.5 | 68.11 |
3 | -11 | 1 | 0 | 0 | 87.8 | 87.58 | 78.0 | 77.98 |
4 | 1 | -11 | 0 | 0 | 88.4 | 87.88 | 78.2 | 78.08 |
5 | 0 | 0 | -11 | -11 | 75.6 | 74.77 | 62.4 | 62.92 |
6 | 0 | 0 | 1 | 1 | 84.3 | 84.40 | 71.7 | 71.05 |
7 | -11 | -11 | 0 | 0 | 83.2 | 82.95 | 71.1 | 71.25 |
8 | -11 | 0 | 0 | 1 | 86.8 | 86.68 | 76.2 | 76.20 |
9 | 0 | 0 | 0 | 0 | 90.0 | 90.40 | 80.1 | 80.44 |
10 | -11 | 0 | 1 | 0 | 83.9 | 84.23 | 69.8 | 69.65 |
11 | 0 | 1 | 1 | 0 | 88.2 | 88.21 | 76.7 | 77.10 |
12 | 0 | -11 | 0 | -11 | 79.2 | 79.51 | 73.4 | 72.98 |
13 | 1 | 0 | -11 | 0 | 85.5 | 85.39 | 69.8 | 69.80 |
14 | 1 | 0 | 0 | -11 | 82.3 | 82.94 | 76.9 | 77.19 |
15 | 1 | 1 | 0 | 0 | 90.2 | 89.72 | 80.4 | 80.12 |
16 | 0 | 1 | 0 | 1 | 90.1 | 90.01 | 80.6 | 80.86 |
17 | -11 | 0 | 0 | -11 | 79.7 | 79.81 | 72.3 | 72.55 |
18 | 0 | 1 | 0 | -11 | 82.5 | 82.99 | 77.4 | 77.26 |
19 | 0 | 0 | -11 | 1 | 89.0 | 88.98 | 74.5 | 74.87 |
20 | 1 | 0 | 1 | 0 | 88.5 | 88.56 | 77.0 | 77.23 |
21 | 0 | 0 | 0 | 0 | 90.9 | 90.40 | 80.1 | 80.44 |
22 | 0 | -11 | -11 | 0 | 82.1 | 82.61 | 68.2 | 68.09 |
23 | 0 | -11 | 0 | 1 | 87.3 | 87.03 | 76.4 | 76.38 |
24 | 0 | 0 | 0 | 0 | 90.1 | 90.40 | 80.7 | 80.44 |
25 | 0 | 0 | 1 | -11 | 84.8 | 84.08 | 76.5 | 76.00 |
26 | 0 | -11 | 1 | 0 | 84.1 | 84.33 | 69.9 | 70.42 |
27 | 0 | 0 | 0 | 0 | 90.3 | 90.40 | 80.8 | 80.44 |
28 | 0 | 1 | -11 | 0 | 84.9 | 85.19 | 70.4 | 70.17 |
29 | 1 | 0 | 0 | 1 | 90.2 | 90.61 | 80.5 | 80.54 |
来源 | 平方和和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 446.06 | 14 | 31.86 | 111.65 | <0.0001 |
A | 37.45 | 1 | 37.45 | 131.25 | <0.0001 |
B | 31.36 | 1 | 31.36 | 109.91 | <0.0001 |
C | 16.80 | 1 | 16.80 | 58.89 | <0.0001 |
D | 158.41 | 1 | 158.41 | 555.14 | <0.0001 |
AB | 1.96 | 1 | 1.96 | 6.87 | 0.0201 |
AC | 0.64 | 1 | 0.64 | 2.24 | 0.1564 |
AD | 0.16 | 1 | 0.16 | 0.56 | 0.4664 |
BC | 0.42 | 1 | 0.42 | 1.48 | 0.2438 |
BD | 0.063 | 1 | 0.063 | 0.22 | 0.6470 |
CD | 48.30 | 1 | 48.30 | 169.27 | <0.0001 |
A2 | 17.04 | 1 | 17.04 | 59.72 | <0.0001 |
B2 | 19.77 | 1 | 19.77 | 69.28 | <0.0001 |
C2 | 82.71 | 1 | 82.71 | 289.84 | <0.0001 |
D2 | 92.23 | 1 | 92.23 | 323.22 | <0.0001 |
残差 | 3.99 | 14 | 0.27 | ||
失拟误差 | 3.39 | 10 | 0.34 | 2.26 | 0.2240 |
纯误差 | 0.60 | 4 | 0.15 | ||
总误差 | 450.02 | 28 | |||
标准偏差 | 0.53 | 预测系数R | 0.9545 | ||
确定系数R2 | 0.9911 | 变异系数 | 0.62% | ||
调整系数R | 0.9822 | 精密度 | 41.234 |
表4 连续流重氮化回归方程方差分析和显著性检验结果
来源 | 平方和和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 446.06 | 14 | 31.86 | 111.65 | <0.0001 |
A | 37.45 | 1 | 37.45 | 131.25 | <0.0001 |
B | 31.36 | 1 | 31.36 | 109.91 | <0.0001 |
C | 16.80 | 1 | 16.80 | 58.89 | <0.0001 |
D | 158.41 | 1 | 158.41 | 555.14 | <0.0001 |
AB | 1.96 | 1 | 1.96 | 6.87 | 0.0201 |
AC | 0.64 | 1 | 0.64 | 2.24 | 0.1564 |
AD | 0.16 | 1 | 0.16 | 0.56 | 0.4664 |
BC | 0.42 | 1 | 0.42 | 1.48 | 0.2438 |
BD | 0.063 | 1 | 0.063 | 0.22 | 0.6470 |
CD | 48.30 | 1 | 48.30 | 169.27 | <0.0001 |
A2 | 17.04 | 1 | 17.04 | 59.72 | <0.0001 |
B2 | 19.77 | 1 | 19.77 | 69.28 | <0.0001 |
C2 | 82.71 | 1 | 82.71 | 289.84 | <0.0001 |
D2 | 92.23 | 1 | 92.23 | 323.22 | <0.0001 |
残差 | 3.99 | 14 | 0.27 | ||
失拟误差 | 3.39 | 10 | 0.34 | 2.26 | 0.2240 |
纯误差 | 0.60 | 4 | 0.15 | ||
总误差 | 450.02 | 28 | |||
标准偏差 | 0.53 | 预测系数R | 0.9545 | ||
确定系数R2 | 0.9911 | 变异系数 | 0.62% | ||
调整系数R | 0.9822 | 精密度 | 41.234 |
来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 661.71 | 14 | 47.26 | 239.50 | <0.0001 |
A | 60.30 | 1 | 60.30 | 305.56 | <0.0001 |
B | 57.64 | 1 | 57.64 | 292.08 | <0.0001 |
C | 64.40 | 1 | 64.40 | 326.35 | <0.0001 |
D | 36.75 | 1 | 36.75 | 186.22 | <0.0001 |
AB | 5.52 | 1 | 5.52 | 27.98 | 0.0001 |
AC | 8.70 | 1 | 8.70 | 44.10 | <0.0001 |
AD | 0.023 | 1 | 0.023 | 0.11 | 0.7406 |
BC | 5.29 | 1 | 5.29 | 26.81 | 0.0001 |
BD | 0.01 | 1 | 0.01 | 0.051 | 0.8251 |
CD | 71.40 | 1 | 71.40 | 361.82 | <0.0001 |
A2 | 23.81 | 1 | 23.81 | 120.64 | <0.0001 |
B2 | 18.00 | 1 | 18.00 | 91.21 | <0.0001 |
C2 | 348.35 | 1 | 348.35 | 1765.20 | <0.0001 |
D2 | 23.50 | 1 | 23.50 | 119.07 | <0.0001 |
残差 | 2.76 | 14 | 0.20 | ||
失拟误差 | 2.33 | 10 | 0.23 | 2.16 | 0.2385 |
纯误差 | 0.43 | 4 | 0.11 | ||
总误差 | 664.47 | 28 | |||
标准偏差 | 0.44 | 预测系数R | 0.9788 | ||
确定系数R2 | 0.9958 | 变异系数 | 0.59% | ||
调整系数R | 0.9917 | 精密度 | 56.170 |
表5 半间歇重氮化回归方程方差分析和显著性检验结果
来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 661.71 | 14 | 47.26 | 239.50 | <0.0001 |
A | 60.30 | 1 | 60.30 | 305.56 | <0.0001 |
B | 57.64 | 1 | 57.64 | 292.08 | <0.0001 |
C | 64.40 | 1 | 64.40 | 326.35 | <0.0001 |
D | 36.75 | 1 | 36.75 | 186.22 | <0.0001 |
AB | 5.52 | 1 | 5.52 | 27.98 | 0.0001 |
AC | 8.70 | 1 | 8.70 | 44.10 | <0.0001 |
AD | 0.023 | 1 | 0.023 | 0.11 | 0.7406 |
BC | 5.29 | 1 | 5.29 | 26.81 | 0.0001 |
BD | 0.01 | 1 | 0.01 | 0.051 | 0.8251 |
CD | 71.40 | 1 | 71.40 | 361.82 | <0.0001 |
A2 | 23.81 | 1 | 23.81 | 120.64 | <0.0001 |
B2 | 18.00 | 1 | 18.00 | 91.21 | <0.0001 |
C2 | 348.35 | 1 | 348.35 | 1765.20 | <0.0001 |
D2 | 23.50 | 1 | 23.50 | 119.07 | <0.0001 |
残差 | 2.76 | 14 | 0.20 | ||
失拟误差 | 2.33 | 10 | 0.23 | 2.16 | 0.2385 |
纯误差 | 0.43 | 4 | 0.11 | ||
总误差 | 664.47 | 28 | |||
标准偏差 | 0.44 | 预测系数R | 0.9788 | ||
确定系数R2 | 0.9958 | 变异系数 | 0.59% | ||
调整系数R | 0.9917 | 精密度 | 56.170 |
反应器 | 单位体积换热面积/m2·m-3 | 年产量 /t | 产量放大 方式 | 放大效应 |
---|---|---|---|---|
AFRTM-G1 | 2500 | 25~80 | 数增放大 | 无放大效应 |
AFRTM-G4 | 2500 | 约2000 | — | — |
半间歇反应釜 | 10 | 约1500 | 尺寸放大 | 小试-中试-生产 |
表6 Corning AFRTM微通道反应器与半间歇反应釜放大数据对比
反应器 | 单位体积换热面积/m2·m-3 | 年产量 /t | 产量放大 方式 | 放大效应 |
---|---|---|---|---|
AFRTM-G1 | 2500 | 25~80 | 数增放大 | 无放大效应 |
AFRTM-G4 | 2500 | 约2000 | — | — |
半间歇反应釜 | 10 | 约1500 | 尺寸放大 | 小试-中试-生产 |
1 | JIMENEZ-GONZALEZ C, POECHLAUER P, BROXTERMAN Q B, et al. Key green engineering research areas for sustainable manufacturing: a perspective from pharmaceutical and fine chemicals manufacturers[J]. Organic Process Research & Development, 2011, 15(4): 900-911. |
2 | LIM F P L, DOLZHENKO A V. Atom economy in green organic synthesis[M]//Green sustainable process for chemical and environmental engineering and science. Amsterdam: Elsevier, 2020: 1-12. |
3 | TONNE P, JAEDICKE H. Preparation of saccharin: US4464537[P]. 1984-08-07. |
4 | 齐枫楠, 杨国新, 赵利宽, 等.一种糖精钠的生产方法: CN103709118A[P]. 2014-04-09. |
QI F N, YANG G X, ZHAO L K, et al. Method for producing sodium saccharin: CN103709118A[P]. 2014-04-09. | |
5 | GILLERON P, WLODARCZYK N, HOUSSIN R, et al. Design, synthesis and biological evaluation of substituted dioxodibenzothiazepines and dibenzocycloheptanes as farnesyltransferase inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2007, 17(19): 5465-5471. |
6 | SHENG M, FRURIP D, GORMAN D. Reactive chemical hazards of diazonium salts[J]. Journal of Loss Prevention in the Process Industries, 2015, 38: 114-118. |
7 | SHUKLA C A, KULKARNI A A, RANADE V V. Selectivity engineering of the diazotization reaction in a continuous flow reactor[J]. Reaction Chemistry & Engineering, 2016, 1(4): 387-396. |
8 | KITTSLEY S. Need for minimum standards in evaluating doctoral programs[J]. Journal of Chemical Education, 1971, 48(6): 419. |
9 | ULLRICH R, GREWER T. Decomposition of aromatic diazonium compounds[J]. Thermochimica Acta, 1993, 225(2): 201-211. |
10 | PARTINGTON S, WALDRAM S P. Runaway reaction during production of an azo dye intermediate[J]. Process Safety and Environmental Protection, 2002, 80(1): 33-39. |
11 | 殷亘令, 李庆云. 从一起爆炸事故看DDNP生产设备的安全问题[J]. 爆破器材, 2000, 29(2): 28-30. |
YIN G L, LI Q Y. The safety analysis of on explosion accident from the equipment used in the production of DDNP[J]. Explosive Materials, 2000, 29(2): 28-30. | |
12 | MARALLA Y, SONAWANE S, KASHINATH D, et al. Process intensification of tetrazole reaction through tritylation of 5-[4’-(methyl) biphenyl-2-Yl] using microreactors[J]. Chemical Engineering and Processing Process Intensification, 2017, 112: 9-17. |
13 | ZHANG F X, NOYERIE C C, WOEHI P, et al. Intensified liquid/liquid mass transfer in corning advanced-flow reactors[J]. Chemical Engineering Transactions, 2011, 24: 1369-1374. |
14 | 穆金霞,殷学锋. 微通道反应器在合成反应中的应用[J]. 化学进展, 2008, 20(1): 60-75. |
MU J X, YIN X F. Application of microfluidic reactors on synthesis reactions[J]. Progress in Chemistry, 2008, 20(1): 60-75. | |
15 | GUTMANN B, CANTILLO D, KAPPE C O. Continuous-flow technology—A tool for the safe manufacturing of active pharmaceutical ingredients[J]. Angewandte Chemie International Edition, 2015, 54(23): 6688-6728. |
16 | MALET-SANZ L, MADRZAK J, HOLVEY R S, et al. A safe and reliable procedure for the iododeamination of aromatic and heteroaromatic amines in a continuous flow reactor[J]. Tetrahedron Letters, 2009, 50(52): 7263-7267. |
17 | USUTANI H, TOMIDA Y, NAGAKI A, et al. Generation and reactions of o-bromophenyllithium without benzyne formation using a microreactor[J]. Journal of the American Chemical Society, 2007, 129(11): 3046-3047. |
18 | DEADMAN B J, COLLINS S G, MAGUIRE A R. Taming hazardous chemistry in flow: the continuous processing of diazo and diazonium compounds[J]. Chemistry, 2015, 21(6): 2298-2308. |
19 | ECKERT H, AUERWECK J. Solvent-free and safe process for the quantitative production of phosgene from triphosgene by deactivated imino-based catalysts[J]. Organic Process Research & Development, 2010, 14(6): 1501-1505. |
20 | CANTILLO D, DAMM M, DALLINGER D, et al. Sequential nitration/hydrogenation protocol for the synthesis of triaminophloroglucinol: safe generation and use of an explosive intermediate under continuous-flow conditions[J]. Organic Process Research & Development, 2014, 18(11): 1360-1366. |
21 | WOOTTON R C, FORTT R, DE MELLO A J. On-chip generation and reaction of unstable intermediates-monolithic nanoreactors for diazonium chemistry: azo dyes[J]. Lab on a Chip, 2002, 2(1): 5-7. |
22 | PINHO V D, GUTMANN B, MIRANDA L S M, et al. Continuous flow synthesis of α-halo ketones: essential building blocks of antiretroviral agents[J]. The Journal of Organic Chemistry, 2014, 79(4): 1555-1562. |
23 | YU Z Q, LV Y W, YU C M, et al. Continuous flow reactor for Balz-Schiemann reaction: a new procedure for the preparation of aromatic fluorides[J]. Tetrahedron Letters, 2013, 54(10): 1261-1263. |
24 | QU T X, NIU S L, GONG Z Q, et al. Wollastonite decorated with calcium oxide as heterogeneous transesterification catalyst for biodiesel production: optimized by response surface methodology[J]. Renewable Energy, 2020, 159: 873-884. |
25 | SARAFRAZ M M, SAFAEI M R, GOODARZI M, et al. Experimental investigation and performance optimisation of a catalytic reforming micro-reactor using response surface methodology[J]. Energy Conversion and Management, 2019, 199: 111983. |
26 | 杨玉宇, 陈冰冰, 张元平. 无冷却螺旋管式苯胺重氮化反应工艺试验研究[J]. 浙江工业大学学报, 2009, 37(2): 213-216. |
YANG Y Y, CHEN B B, ZHANG Y P. Experimental study on aniline diazotization without cooling in a spiral reactor[J]. Journal of Zhejiang University of Technology, 2009, 37(2): 213-216. | |
27 | STOESSEL F. Thermal safety of chemical processes: risk assessment and process design[M]. Germany: Wiley-VCH, 2008: 189-193. |
28 | ZOU Y, ZHANG T, WANG G, et al. Microfluidic continuous flow synthesis of 1,5-ditosyl-1,5-diazocane-3,7-dione using response surface methodology[J]. Journal of Industrial and Engineering Chemistry, 2020, 82: 113-121. |
29 | YUAN Y Z, ZHANG Y M, LIU T, et al. Optimization of microwave roasting-acid leaching process for vanadium extraction from shale via response surface methodology[J]. Journal of Cleaner Production, 2019, 234: 494-502. |
30 | 孙烁, 刘其友, 陈水泉, 等. 利用响应面法对L-2菌株降解石油烃进行优化[J]. 化工进展, 2019, 38(12): 5512-5518. |
SUN S, LIU Q Y, CHEN S Q, et al. Optimization for degradation of total petroleum hydrocarbon by the strain L-2 with response surface methodology[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5512-5518. | |
31 | PARK Y J, YU T, YIM S J, et al. A 3D-printed flow distributor with uniform flow rate control for multi-stacked microfluidic systems[J]. Lab on a Chip, 2018, 18(8): 1250-1258. |
32 | WEI M, BOUTIN G, FAN Y, et al. Numerical and experimental investigation on the realization of target flow distribution among parallel mini-channels[J]. Chemical Engineering Research and Design, 2016, 113: 74-84. |
33 | Inc Corning. Devices for microreactor fluid distribution: EP2193839 (B1)[P]. 2019-03-13. |
34 | 马俊海. 康宁微通道反应器技术-强化传质传热,绿色连续合成[C]//中国化工学会橡塑产品绿色制造专业委员会微通道反应技术研讨和产业化推进会. 南京, 2016: 148-168. |
MA J H. Corning microchannel reactor technology-enhanced mass and heat transfer, green continuous synthesis[C]//Rrubber and Plastic Rroducts Green Manufacturing Professional Committee, Microchannel Reaction Technology Seminar and Industrialization Promotion Meeting. Nanjing, 2016: 148-168. |
[1] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[2] | 邓建, 王凯, 骆广生. 面向硝基化学品安全生产的绝热连续微反应技术发展及思考[J]. 化工进展, 2023, 42(8): 3923-3925. |
[3] | 刘卫孝, 刘洋, 高福磊, 汪伟, 汪营磊. 微反应器在含能材料合成与品质提升中的应用[J]. 化工进展, 2023, 42(7): 3349-3364. |
[4] | 王子宗, 刘罡, 王振维. 乙烯丙烯生产过程强化技术进展及思考[J]. 化工进展, 2023, 42(4): 1669-1676. |
[5] | 肖周荣, 李国柱, 王涖, 张香文, 谷建民, 王德松. 液体碳氢燃料蒸汽重整制氢催化剂研究进展[J]. 化工进展, 2022, 41(S1): 97-107. |
[6] | 闫鹏, 程易. 用于分布式制氢的甲烷蒸汽重整膜反应器的数值模拟[J]. 化工进展, 2022, 41(7): 3446-3454. |
[7] | 姜圣坤, 韩博, 赵鑫, 于万河, 骆广生, 邓建, 刘光启, 王景奇, 王金波. 微通道反应器中甲苯过量连续绝热硝化制备单硝基甲苯[J]. 化工进展, 2022, 41(6): 2910-2914. |
[8] | 阎丽芳, 储博钊, 钟思青, 程易. 微反应器中乙炔法合成N-乙烯基吡咯烷酮的过程研究[J]. 化工进展, 2022, 41(6): 2902-2909. |
[9] | 石一慈, 潘艳秋, 王成宇, 范嘉禾, 俞路. 焦耳效应强化气隙式膜蒸馏脱盐过程的实验研究[J]. 化工进展, 2022, 41(5): 2285-2291. |
[10] | 孙逊, 赵越, 玄晓旭, 赵珊, YOON Joon Yong, 陈颂英. 基于水力空化的化工过程强化研究进展[J]. 化工进展, 2022, 41(5): 2243-2255. |
[11] | 宋飞, 王君妍, 何林, 隋红, 李鑫钢. 表面活性剂强化重质油矿溶剂萃取残渣中残留溶剂鼓泡分离[J]. 化工进展, 2022, 41(4): 2007-2014. |
[12] | 唐思扬, 李星宇, 鲁厚芳, 钟山, 梁斌. 低能耗化学吸收碳捕集技术展望[J]. 化工进展, 2022, 41(3): 1102-1106. |
[13] | 刘庆丰, 廖亚龙, 吴越, 郗家俊, 嵇广雄. 黄铜矿强化浸出研究进展[J]. 化工进展, 2022, 41(11): 6099-6110. |
[14] | 冷南江, 马国光, 张涛, 雷洋, 彭豪, 熊祚帅, 陈玉婷. 高含有机硫天然气的净化研究与探索[J]. 化工进展, 2022, 41(10): 5342-5353. |
[15] | 王彦谦, 王远洋. 微反应器中费托合成的研究进展[J]. 化工进展, 2021, 40(S2): 185-191. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |