1 |
WU X, BEECHER G R, HOLDEN J M, et al. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States[J]. Journal of Agricultural and Food Chemistry, 2004, 52(12): 4026-4037.
|
2 |
YAMAGUCHI K K D L, PEREIRA L F R, LAMARÃO C V, et al. Amazon acai: chemistry and biological activities: a review[J]. Food Chemistry, 2015, 179: 137-151.
|
3 |
SCHAUSS A G, WU X, PRIOR R L, et al. Antioxidant capacity and other bioactivities of the freeze-dried Amazonian palm berry, Euterpe oleraceaeMart. (acai)[J]. Journal of Agricultural and Food Chemistry, 2006, 54(22): 8604-8610.
|
4 |
SCHAUSS A G, WU X, PRIOR R L, et al. Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry, Euterpe oleraceaMart. (acai)[J]. Journal of Agricultural and Food Chemistry, 2006, 54(22): 8598-8603.
|
5 |
SHAHIDI F. Dried fruits: phytochemicals and health effects edited[M].Newfoundland:John Wiley & Sons, 2012: 395-405.
|
6 |
DANTAS A M, MAFALDO I M, OLIVEIRA P M de L, et al. Bioaccessibility of phenolic compounds in native and exotic frozen pulps explored in Brazil using a digestion model coupled with a simulated intestinal barrier[J]. Food Chemistry, 2019, 274: 202-214.
|
7 |
N A Da SILVA, RODRIGUES E, MERCADANTE A Z, et al. Phenolic compounds and carotenoids from four fruits native from the Brazilian Atlantic forest[J]. Journal of Agricultural and Food Chemistry, 2014, 62(22): 5072-5084.
|
8 |
RUFINO M Do S M, ALVES R E, DE BRITO E S, et al. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil[J]. Food Chemistry, 2010, 121(4): 996-1002.
|
9 |
HASSIMOTTO N M A, GENOVESE M I, LAJOLO F M. Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps[J]. Journal of Agricultural and Food Chemistry, 2005, 53(8): 2928-2935.
|
10 |
LICHTENTHÄLER R, RODRIGUES R B, MAIA J G S, et al. Total oxidant scavenging capacities of Euterpe oleracea Mart. (Açaí) fruits[J]. International Journal of Food Sciences and Nutrition, 2005, 56(1): 53-64.
|
11 |
RUFINO M S M, ALVES R E, FERNANDES F A N, et al. Free radical scavenging behavior of ten exotic tropical fruits extracts[J]. Food Research International, 2011, 44(7): 2072-2075.
|
12 |
DESMARCHELIER C, REPETTO M, COUSSIO J, et al. Total reactive antioxidant potential (TRAP) and total antioxidant reactivity (TAR) of medicinal plants used in southwest Amazonia (Bolivia and Peru)[J]. Pharmaceutical Biology, 1997, 35(4): 288-296.
|
13 |
DEHARO E, BAELMANS R, GIMENEZ A, et al. In vitro immunomodulatory activity of plants used by the Tacana ethnic group in Bolivia[J]. Phytomedicine, 2004, 11(6): 516-522.
|
14 |
JENSEN J F, KVIST L P, CHRISTENSEN S B. An antiplasmodial lignan from Euterpe precatoria[J]. Journal of Natural Products, 2002, 65(12): 1915-1917.
|
15 |
MATHEUS M E, MANTOVANI I S B, SANTOS G B, et al. Ação de extratos do açaí (Euterpe oleracea Mart.) sobre a produção de óxido nítrico em células RAW 264.7[J]. Revista Brasileira de Farmacognosia, 2003, 13: 3-5.
|
16 |
RODRIGUES R B, LICHTENTHÄLER R, ZIMMERMANN B F, et al. Total oxidant scavenging capacity of Euterpe oleracea Mart. (açaí) seeds and identification of their polyphenolic compounds[J]. Journal of Agricultural and Food Chemistry, 2006, 54(12): 4162-4167.
|
17 |
毕云枫, 宋凤瑞, 刘志强. 天然酪氨酸酶抑制剂的种类及其对酪氨酸酶抑制作用的研究进展[J]. 吉林大学学报(医学版), 2014, 40(2): 454-459.
|
|
BI Y F, SONG F R, LIU Z Q. Research progress on types of natural tyrosinase inhibitors and their inhibitory effects on tyrosinase [J]. Journal of Jilin University(Medicine Edition), 2014, 40(2): 454-459.
|
18 |
CHANG T S. An updated review of tyrosinase inhibitors[J]. International Journal of Molecular Sciences, 2009, 10(6): 2440-2475.
|
19 |
YAMAGUCHI Y, HEARING V J. Physiological factors that regulate skin pigmentation[J]. Biofactors, 2009, 35(2): 193-199.
|
20 |
赵美娟, 户晶晶, 倪辉, 等. 黑色素生成信号通路研究进展[J]. 生物工程学报, 2019, 35(9): 1633-1642.
|
|
ZHAO M J, HU J J, NI H, et al. Research progress in melanogenesis signaling pathway[J]. Chinese Journal of Biotechnology, 2019, 35(9): 1633-1642.
|
21 |
周凌, 郭亮, 王敏等. 甘草酸苷通过下调Cox-2/Akt/GSK3β/β-Catenin信号通路抑制UVB诱导黑素生成的实验研究[J]. 中国中西医结合杂志, 2018, 38(11): 90-94.
|
|
ZHOU L, GUO L, WANG M, et al. Glycyrrhizic acid suppressed UVB-induced melanogenesis of melanocytes via down-regulating Cox-2/Akt/GSK3β/β-catenin signal pathway[J]. Chinese Journal of Integrated Traditional and Western Medicine, 2018, 38(11): 90-94.
|
22 |
TEIXEIRA R Da S, ROCHA P R, POLONINI H C, et al. Mushroom tyrosinase inhibitory activity and major fatty acid constituents of Amazonian native flora oils[J]. Brazilian Journal of Pharmaceutical Sciences, 2012, 48(3): 399-404
|
23 |
LAM R Y Y, LIN Z X, SVIDERSKAYA E, et al. Application of a combined sulphorhodamine B and melanin assay to the evaluation of Chinese medicines and their constituent compounds for hyperpigmentation treatment[J]. Journal of Ethnopharmacology, 2010, 132(1): 274-279.
|
24 |
PACHECO-PALENCIA L A, DUNCAN C E, TALCOTT S T. Phytochemical composition and thermal stability of two commercial Açaí species, Euterpe oleracea and Euterpe precatoria[J]. Food Chemistry, 2009, 115(4): 1199-1205.
|
25 |
GARZÓN G A, NARVÁEZ-CUENCA C E, VINCKEN J P, et al. Polyphenolic composition and antioxidant activity of Açaí (Euterpe oleracea Mart.) from Colombia[J]. Food Chemistry, 2017, 217: 364-372.
|
26 |
CIMINO F, AMBRA R, CANALI R, et al. Effect of cyanidin-3-O-glucoside on UVB-induced response in human keratinocytes[J]. Journal of Agricultural and Food Chemistry, 2006, 54(11): 4041-4047.
|
27 |
HU Y, MA Y, WU S, et al. Protective effect of cyanidin-3-O-glucoside against ultraviolet B radiation-induced cell damage in human HaCaT keratinocytes[J]. Frontiers in Pharmacology, 2016, 7: 301.
|
28 |
PRATHEESHKUMAR P, SON Y O, WANG X, et al. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-KB signaling pathways in SKH-1 hairless mice skin[J]. Toxicology and Applied Pharmacology, 2014, 280(1): 127-137.
|
29 |
HE Y, HU Y, JIANG X, et al. Cyanidin-3-O-glucoside inhibits the UVB-induced ROS/COX-2 pathway in HaCaT cells[J]. Journal of Photochemistry and Photobiology B: Biology, 2017, 177: 24-31.
|
30 |
INADA K O P, OLIVEIRA A A, REVORÊDO T B, et al. Screening of the chemical composition and occurring antioxidants in jabuticaba (Myrciaria jaboticaba) and jussara (Euterpe edulis) fruits and their fractions[J]. Journal of Functional Foods, 2015, 17: 422-433.
|
31 |
CHAIPRASONGSUK A, ONKOKSOONG T, PLUEMSAMRAN T, et al. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses[J]. Redox Biology, 2016, 8: 79-90.
|
32 |
MIYAZAWA M, OSHIMA T, KOSHIO K, et al. Tyrosinase inhibitor from black rice bran[J]. Journal of Agricultural and Food Chemistry, 2003, 51(24): 6953-6956.
|
33 |
PACHECO-PALENCIA L A, MERTENS-TALCOTT S, TALCOTT S T. Chemical composition, antioxidant properties, and thermal stability of a phytochemical enriched oil from açai (Euterpe oleracea Mart.)[J]. Journal of Agricultural and Food Chemistry, 2008, 56(12): 4631-4636.
|
34 |
CHIN Y W, CHAI H B, KELLER W J, et al. Lignans and other constituents of the fruits of Euterpe oleracea (Açai) with antioxidant and cytoprotective activities[J]. Journal of Agricultural and Food Chemistry, 2008, 56(17): 7759-7764.
|
35 |
KANG J, THAKALI K M, XIE C, et al. Bioactivities of açaí (Euterpe precatoria Mart.) fruit pulp, superior antioxidant and anti-inflammatory properties to Euterpe oleracea Mart.[J]. Food Chemistry, 2012, 133(3): 671-677.
|
36 |
STAHL W, SIES H. β-Carotene and other carotenoids in protection from sunlight[J]. The American Journal of Clinical Nutrition, 2012, 96(5): 1179S-1184S.
|
37 |
SCHAUSS A G. Bioactive foods in promoting health[M]. Oxford: Academic Press, 2010: 479-490.
|
38 |
ANDO H, WEN Z M, KIM H Y, et al. Intracellular composition of fatty acid affects the processing and function of tyrosinase through the ubiquitin-proteasome pathway[J]. Biochemical Journal, 2006, 394(1): 43-50.
|
39 |
GUO Y J, PAN Z Z, CHEN C Q, et al. Inhibitory effects of fatty acids on the activity of mushroom tyrosinase[J]. Applied Biochemistry and Biotechnology, 2010, 162(6): 1564-1573.
|
40 |
MICHIHARA A, OGAWA S, KAMIZAKI Y, et al. Effect of delta-tocotrienol on melanin content and enzymes for melanin synthesis in mouse melanoma cells[J]. Biological and Pharmaceutical Bulletin, 2010, 33(9): 1471-1476.
|
41 |
NG L T, LIN L T, CHEN C L, et al. Anti-melanogenic effects of δ-tocotrienol are associated with tyrosinase-related proteins and MAPK signaling pathway in B16 melanoma cells[J]. Phytomedicine, 2014, 21(7): 978-983.
|
42 |
TRUONG X T, PARK S H, LEE Y G, et al. Protocatechuic acid from pear inhibits melanogenesis in melanoma cells[J]. International Journal of Molecular Sciences, 2017, 18(8): 1809.
|
43 |
FARRIS P K. Topical vitamin C: a useful agent for treating photoaging and other dermatologic conditions [J]. Dermatologic Surgery, 2005, 31: 814-818.
|
44 |
PETRUK G, ILLIANO A, GIUDICE R DEL, et al. Malvidin and cyanidin derivatives from Açaí fruit (Euterpe oleraceaMart.) counteract UV-A-induced oxidative stress in immortalized fibroblasts[J]. Journal of Photochemistry and Photobiology B: Biology, 2017, 172: 42-51.
|
45 |
LEE S, BANG C, CHOUNG S. The whitening effect of Açaí berry extract on the B16F10 melanoma cells[J]. Planta Medica, 2009, 75(9): 1024.
|
46 |
DAVID G, MICHELLE H, JAVIER A, et al. Compositions comprising kakadu plum extract or acai berry extract: EP20070710236[P]. 2007-07-19.
|
47 |
MONGE-FUENTES V, MUEHLMANN L A, LONGO J P F, et al. Photodynamic therapy mediated by Açaí oil (Euterpe oleracea Martius) in nanoemulsion: a potential treatment for melanoma[J]. Journal of Photochemistry and Photobiology B: Biology, 2017, 166: 301-310.
|