1 | TEMESGEN T , BUI T T, HAN M , et al . Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review[J]. Advances in Colloid and Interface Science, 2017, 246: 40-51. | 2 | AGARWAL A , NG W J, LIU Y . Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere, 2011, 84(9): 1175-1180. | 3 | FUJIWARA A , TAKAGI S , WATANABE K , et al . Experimental study on the new micro-bubble generator and its application to water purification system[C]//ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. American Society of Mechanical Engineers, 2003: 469-473. | 4 | YAO K , CHI Y , WANG F , et al . The effect of microbubbles on gas-liquid mass transfer coefficient and degradation rate of COD in wastewater treatment[J]. Water Science and Technology, 2016, 73(8): 1969-1977. | 5 | PARAMAR R , MAJUMDER S K . Mineral beneficiation by ionic microbubble in continuous plant prototype: efficiency and its analysis by kinetic model[J]. Chemical Engineering Science, 2016, 142: 42-54. | 6 | ANDINET T , KIM I , LEE J Y . Effect of microbubble generator operating parameters on oxygen transfer efficiency in water[J]. Desalination and Water Treatment, 2016, 57(54): 26327-26335. | 7 | FUJIWARA A , OKAMOTO K , HASHIGUCHI K , et al . Bubble breakup phenomena in a Venturi tube[C]//ASME/JSME 2007 5th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2007: 553-560. | 8 | NOMURA Y , UESAWA S , KANEKO A , et al . Study on bubble breakup mechanism in a Venturi tube[C]//ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2011: 2533-2540. | 9 | 居晓峰, 孙立成, 唐文偲, 等 . 文丘里式气泡发生器工作特性分析[J]. 核技术, 2014, 37(12): 120605-120605. | 9 | JU X F , SUN L C , TANG W C , et al . Analysis of the operating characteristics of a Venturi-type bubble generator for MSR[J]. Nuclear Techniques, 2014, 37(12): 120605-120605. | 10 | 唐文偲, 阎昌琪, 孙立成, 等 . 文丘里式气泡发生器气泡碎化特性研究[J]. 原子能科学技术, 2014, 48(5): 844-848. | 10 | TANG W C , YAN C Q , SUN L C , et al . Characteristic of bubble breakup in Venturi-type bubble generator[J]. Atomic Energy Science and Technology, 2014, 48(5): 844-848. | 11 | ZHAO L , MO Z Y , SUN L C , et al . A visualized study of the motion of individual bubbles in a Venturi-type bubble generator[J]. Progress in Nuclear Energy, 2017, 97: 74-89. | 12 | 邵梓一, 张海燕, 孙立成, 等 . 文丘里式气泡发生器内气泡破碎机制分析[J]. 化工学报, 2018, 69(6): 110-116. | 12 | SHAO Z Y , ZHANG H Y , SUN L C , et al . Bubble breakup mechanism in Venturi-type bubble generator[J]. CIESC Journal, 2018, 69(6): 110-116. | 13 | 莫政宇, 杜敏, 孙立成, 等 . 低含气率条件下文丘里管气泡发生器内气泡碎裂过程研究[J]. 核动力工程, 2016, 37(6): 41-44. | 13 | MO Z Y , DU M , SUN L C , et al . Investigation on bubble breakup in a Venturi-tube bubble generator under low gas fraction condition[J]. Nuclear Power Engineering, 2016, 37(6): 41-44. | 14 | SAMKHANIANI, ANSARI M R . Numerical simulation of bubble condensation using CF-VOF[J]. Progress in Nuclear Energy, 2016, 89: 120-131. | 15 | GUO F , CHEN B . Numerical study on Taylor bubble formation in a micro-channel T-junction using VOF method[J]. Microgravity Science and Technology, 2009, 21(1): 51-58. | 16 | CHEN W Y , WANG J B , JIANG N , et al . Numerical simulation of gas-liquid two-phase jet flow in air-bubble generator[J]. Journal of Central South University of Technology, 2008, 15(1): 140-144. | 17 | WANG L J , JIA Y , YAN X K , et al . Gas-liquid numerical simulation on micro-bubble generator and optimization on the nozzle to throat spacing[J]. Asia-Pacific Journal of Chemical Engineering, 2015, 10(6): 893-903. | 18 | QIAN D , MCLAUGHLIN J B , SANKARANARAYANAN K , et al . Simulation of bubble breakup dynamics in homogeneous turbulence[J]. Chemical Engineering Communications, 2006, 193(8): 1038-1063. | 19 | LAU Y M, BAI W , DEEN N G , et al . Numerical study of bubble break-up in bubbly flows using a deterministic Euler–Lagrange framework[J]. Chemical Engineering Science, 2014, 108: 9-22. | 20 | 唐文偲 . 气泡发生器结构与性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2014. | 20 | TANG W C . Study of the structure and performance of bubble generator[D]. Harbin: Harbin Engineering University, 2014. | 21 | LI X L , MA X W , ZHANG L , et al . Dynamic characteristics of ventilated bubble moving in micro scale Venture[J]. Chemical Engineering and Processing: Process Intensification, 2016, 100: 79-86. | 22 | KRESS T S . Mass transfer between small bubbles and liquids in co-current turbulent pipeline flow[R]. Oak Ridge National Lab., Tenn., 1972. | 23 | GABBARD C H . Development of a Venturi type bubble generator for use in the molten-salt reactor xenon removal system[R]. Oak Ridge National Lab. | 23 | (ORNL), Ridge Oak , (United States) TN , 1972. | 24 | UESAWA S I , KANEKO A , NOMURA Y , et al . Study on bubble breakup behavior in a Venturi tube[J]. Multiphase Science and Technology, 2012, 24(3): 257-277. | 25 | SOUBIRAN J , SHERWOOD J D . Bubble motion in a potential flow within a Venture[J]. International Journal of Multiphase Flow, 2000, 26(11): 1771-1796. | 26 | LUCAS D , KREPPER E , PRASSER H M . Development of co-current air-water flow in a vertical pipe[J]. International Journal of Multiphase Flow, 2005, 31(12): 1304-1328. | 27 | LUCAS D , KREPPER E , PRASSER H M . Use of models for lift, wall and turbulent dispersion forces acting on bubbles for poly-disperse flows[J]. Chemical Engineering Science, 2007, 62(15): 4146- 4157. | 28 | LUCAS D , KREPPER E . CFD models for poly dispersed bubbly flows[M]. Forschungszentrum Dresden-Rossendorf, 2007. | 29 | SHERWOOD J D . Potential flow around a deforming bubble in a Venture[J]. International Journal of Multiphase Flow, 2000, 26(12): 2005-2047. | 30 | 李万平 . 计算流体力学[M]. 武汉: 华中科技大学出版社, 2004. | 30 | LI W P . Computational fluid mechanics[M]. Wuhan: Huazhong University of Science and Technology Press, 2004. | 31 | CHEN P , SANYAL J , DUDUKOVI M P . Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures[J]. Chemical Engineering Science, 2005, 60(4): 1085-1101. | 32 | 陈文义, 汤凯, 孙兵, 等 .气泡发生器喷嘴的改进及两相流数值模拟研究[J]. 选煤技术, 2012(4): 19-22, 26. | 32 | CHEN W Y , TANG K , SUN B , et al . Research on improved nozzle of bubble generator and two phase flow based on numerical simulation[J]. Coal Preparation Technology, 2012(4): 19-22, 26. | 33 | LI Z K , SHI W L , HE W , et al . Computer simulation method for the bubbling performance of the vortex microbubble generator[C]//2015 International Conference on Electromechanical Control Technology and Transportation. Atlantis Press, 2015. | 34 | WANG L J , JIA Y , YAN X K , et al . Gas liquid numerical simulation on microbubble generator and optimization on the nozzle to throat spacing[J]. Asia‐Pacific Journal of Chemical Engineering, 2015, 10(6): 893-903. | 35 | BASSO A , HAMAD F A , GANESAN P . Effects of the geometrical configuration of air-water mixer on the size and distribution of microbubbles in aeration systems[J]. Asia-Pacific Journal of Chemical Engineering, 2018, 13(6): e2259. | 36 | UESAWA S , KANEKO A , NOMURA Y , et al . Fluctuation of void fraction in the microbubble generator with a Venturi tube[C]//ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2011: 2483-2492. | 37 | NOMURA Y , UESAWA S , KANEKO A , et al . Study on bubble breakup mechanism in a Venturi tube[C]//ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2011: 2533-2540. | 38 | LI J J , SONG Y C , YIN J L , et al . Investigation on the effect of geometrical parameters on the performance of a Venturi type bubble generator[J]. Nuclear Engineering and Design, 2017, 325: 90-96. | 39 | 丁国栋, 陈家庆, 王春升, 等 . 轴向旋流式微气泡发生器的结构设计与数值模拟[J]. 过程工程学报, 2018, 18(5): 934-941. | 39 | DING G D , CHEN J Q , WANG C S , et al . Research onto the structural design and numerical simulation of axial-swirling type microbubble generator[J]. The Chinese Journal of Process Engineering, 2018, 18(5): 934-941. | 40 | 丁国栋 . 气旋浮除油装置主体设备及配套微气泡发生器研究[D]. 北京: 北京化工大学, 2018. | 40 | DING G D . Research on CFU main equipment and matching microbubble generator[D]. Beijing: Beijing University of Chemical Technology, 2018. |
|