化工进展 ›› 2020, Vol. 39 ›› Issue (2): 478-488.DOI: 10.16085/j.issn.1000-6613.2019-0865
收稿日期:
2019-05-29
出版日期:
2020-02-05
发布日期:
2020-03-12
通讯作者:
黄启玉
作者简介:
吕杨(1994—),男,博士研究生,研究方向为高含水易凝高黏原油低温集输粘壁机理。E-mail:lvyangcup @163.com。
基金资助:
Yang LÜ1,Guocheng ZHU2,Fuyong HUO2,Xin DU2,Qiyu HUANG1()
Received:
2019-05-29
Online:
2020-02-05
Published:
2020-03-12
Contact:
Qiyu HUANG
摘要:
随着国内石油开采进入中后期,采出液含水率高达70%~90%,油田集输能耗大大增加,这使得不加热集油工艺得以广泛应用。但凝油粘壁现象所引起的一系列流动保障问题受到了国内外研究者的广泛关注。本文重点阐述了国内外凝油粘壁的研究进展,对现阶段凝油粘壁规律的影响因素与相关研究成果作了总结与分析,介绍了粘壁规律的主要实验设备与研究方法,对国内外学者的实验情况作了概述。结合上述研究成果,总结了凝油粘壁的宏观规律、原油物性与组成的影响以及胶凝原油的影响,并认为凝油粘壁是动力学与热力学共同作用的结果。特别提出了对凝油粘壁温度的判别方法与经验关联式。最后给出了进一步开展凝油粘壁研究的建议与方向。这将对未来缓解与治理凝油粘壁问题与确保管道安全运行有着重要意义。
中图分类号:
吕杨,朱国承,霍富永,杜鑫,黄启玉. 不加热集油粘壁规律研究进展[J]. 化工进展, 2020, 39(2): 478-488.
Yang LÜ,Guocheng ZHU,Fuyong HUO,Xin DU,Qiyu HUANG. Research progress on wall sticking of gelled crude oil atlow-temperature transportation[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 478-488.
35 | LIU X Y, WANG D X, HAN G Y, et al. Temperature limit for oil-gas-water mixed transportation in safety during oil production with special high water-cut[J]. Acta Petrolei Sinica, 2005(3): 102-105. |
36 | JIN N D, NIE X B, WANG J, et al. Flow pattern identification of oil/water two-phase flow based on kinematic wave theory[J]. Flow Measurement and Instrumentation, 2003, 14(4/5): 177-182. |
37 | SHI J, AL-AWADI H, YEUNG H. An experimental investigation of high-viscosity oil-water flow in a horizontal pipe[J]. The Canadian Journal of Chemical Engineering, 2017, 95(12): 2423-2434. |
38 | 刘晓燕, 刘立君, 张艳, 等. 高含水后期水平集输管道内油气水流型实验及分析[J]. 工程热物理学报, 2008, 29(7): 1167-1170. |
LIU X Y, LIU L J, ZHANG Y, et al. The testing and analyses for oil-gas-water flow pattern with super-high water-cut in horizontal gathering-transporting pipeline[J]. Journal of Engineering Thermophysics, 2008, 29(7): 1167-1170. | |
39 | PRIYANTO G S, MANSOORI A S. Measurement of property relationships of nanostructure micelles and coacervates of asphaltene in a pure solvent[J]. Chemical Engineering Science, 2001, 56: 6933-6939. |
1 | 丁振军. 高含水、高黏、易凝原油单井不加热集油的边界条件的确定[D]. 北京: 中国石油大学(北京), 2013. |
DING Z J. Determination of the boundary conditions in the single well gathering system of high water cut, highly viscous, and high-gel-point crude oil without heating[D]. Beijing: China University of Petroleum (Beijing), 2013. | |
2 | 罗升荣, 杨建展, 季寞, 等. 大庆萨南油田不加热集油技术的实践与认识[J]. 应用能源技术, 2001(5): 3-5. |
LUO S R, YANG J Z, JI M, et al. Practice and understanding of low temperature transportation technology in Sanan oilfield, Daqing[J]. Applied Energy Technology, 2001(5): 3-5. | |
40 | 孙广宇, 张劲军. W/O型原油乳状液及其凝胶流变特性研究进展[J]. 油气储运, 2016, 35(3): 229-240. |
SUN G Y, ZHANG J J. Progress in rheological studies of W/O emulsion and its gel[J]. Oil & Gas Storage and Transportation, 2016, 35(3): 229-240. | |
3 | 刘利群, 刘春江. 长庆低渗透油田油气集输工艺技术发展综述[J]. 石油工程建设, 2008(2): 41-43, 85-86. |
LIU L Q, LIU C J. Review on development of oil and gas gathering and transportation technology in Changqing low permeability oilfield[J]. Petroleum Engineering Construction, 2008(2): 41-43, 85-86. | |
4 | 贾治渊. 高含水油田不加热集输边界条件研究[D]. 北京: 中国石油大学(北京), 2017. |
JIA Z Y. Study on the boundary conditions of unheated gathering and transportation in high water cut oilfield[D]. Beijing: China University of Petroleum (Beijing), 2017. | |
5 | 赵晓辉. 长庆油田原油不加热集输工艺分析[J]. 当代化工研究, 2016(4): 59-60. |
ZHAO X H. Analysis on the unheated gathering and transportation technology for the crude oil in Changqing oilfield[J]. Modern Chemical Research, 2016(4): 59-60. | |
6 | 岳永会, 杨玉玲, 谢海英. 喇嘛甸油田不加热集输技术研究与试验[J]. 油气田地面工程, 2005(9): 11. |
YUE Y H, YANG Y L, XIE H Y. Research and test of low-temperature transportation technology in Lamadian oilfield[J]. Oil-Gas Field Surface Engineering, 2005(9): 11. | |
7 | 乔晶鹏, 梁志武, 樊文杰, 等. 特高含水期油井常温输送新途径[J]. 石油规划设计, 2003(2): 28-30. |
QIAO J P, LIANG Z W, FAN W J, et al. A new way of transporting oil well at low temperature in the period of extra high water cut[J]. Petroleum Planning & Engineering, 2003(2): 28-30. | |
8 | 胡博仲, 李昌连, 宋承毅. 大庆高寒地区不加热集油技术回顾与展望[J]. 石油规划设计, 1995(2): 32-33, 37. |
HU B Z, LI C L, SONG C Y. Review and prospect of low-temperature transportation technology in Daqing alpine region[J]. Petroleum Planning & Engineering, 1995(2): 32-33, 37. | |
9 | 宋承毅. 论“三高”原油不加热集油的影响因素[J]. 油田地面工程, 1995(1): 9-12. |
SONG C Y. Discussion on main affecting factors of 3-high type crude unheated gathering[J]. Oil-Gas Field Surface Engineering, 1995(1): 9-12. | |
10 | 刘晓燕. 特高含水期油气水管道安全混输界限确定及水力热力计算方法研究[D]. 大庆: 大庆石油学院, 2005. |
LIU X Y. The limit confirming and hydraulic/thermodynamic calculation method research for oil-gas-water mixing transportation safe in pipeline during oil producing with supper high water cut[D]. Daqing: Daqing Petroleum Institute, 2005. | |
11 | 吴浩, 韩善鹏, 韩方勇, 等. 关于高含水原油集输温度的探讨[J]. 石油规划设计, 2018, 29(2): 14-17. |
WU H, HAN S P, HAN F Y, et al. Discussion of the gathering and transportation temperature of crude oil with high water content[J]. Petroleum Planning & Engineering, 2018, 29(2): 14-17. | |
12 | ZHENG H, HUANG Q, WANG C, et al. Wall sticking of high water cut, highly viscous and high gel-point crude oil transported at low temperatures[J]. China Petroleum Processing & Petrochemical Technology, 2015, 17(4): 20-29. |
13 | ZHENG H, HUANG Q, WANG C. Wall sticking of high water-cut crude oil transported at temperatures below the gel point[J]. Journal of Geophysics & Engineering, 2015, 12(6): 1008-1014. |
14 | 王忠民. 低温集输工艺技术研究与应用[J]. 石油工程建设, 2013, 39(5): 61-63. |
WANG Z M. Study and application of low temperature transportation process technology[J]. Petroleum Engineering Construction, 2013, 39(5): 61-63. | |
15 | SERGIO N B. Experimental study of oil/water flow with paraffin precipitation in subsea pipelines[C]//SPE. California, 2007: 11-14. |
16 | COUTO G H, CHEN H, DELLE C E, et al. An investigation of two-phase oil/water paraffin deposition[J]. SPE Production & Operations, 2008, 23(1): 49-55. |
17 | 刘芳. 低产油田不加热集油技术研究[D]. 大庆: 大庆石油学院, 2010. |
LIU F. Technical research for unheated gathering and transporting of stripper oilfields[D]. Daqing: Daqing Petroleum Institute, 2010. | |
18 | 黄树凤, 申龙涉, 郭佳天, 等. 超稠油水膜输送减阻率与含水率的关系[J]. 油气储运, 2011, 30(2): 123-124. |
HUANG S F, SHEN L S, GUO J T, et al. The relation between water film drag reduction rate and water cut in super heavy oil transportation[J]. Oil & Gas Storage and Transportation, 2011, 30(2): 123-124. | |
19 | SANTOS R G D, MOHAMED R S, BANNWART A C, et al. Contact angle measurements and wetting behavior of inner surfaces of pipelines exposed to heavy crude oil and water[J]. Journal of Petroleum Science and Engineering, 2006, 51(1/2): 9-16. |
20 | 许道振, 张劲军, 王彬, 等. 预润湿对管道润湿性的影响[J]. 西南石油大学学报(自然科学版), 2016, 38(6): 147-151. |
XU D Z, ZHANG J J, WANG B, et al. Effect of pre-wetting on pipeline wettability[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(6): 147-151. | |
21 | HAMOUDA A, DAVIDSEN S. An approach for simulation of paraffin deposition in pipelines as a function of flow characteristics with a reference to Teesside oil pipeline[J]. Petroleum, 1995, 23(5): 213-224. |
22 | 王志华. 含水原油低温集输胶凝淤积行为及治理研究[D]. 大庆: 东北石油大学, 2014. |
WANG Z H. Study on gelling deposition behavior and control of oil-water two-phase system in cooling gathering and transportation[D]. Daqing: Northeast Petroleum University, 2014. | |
23 | VISINTIN R F G, LOCKHART T P, LAPASIN R, et al. Structure of waxy crude oil emulsion gels[J]. Journal of Non-Newtonian Fluid Mechanics, 2008, 149(1): 34-39. |
24 | De OLIVEIRA M C K, CARVALHO R M, CARVALHO A B, et al. Waxy crude oil emulsion gel: impact on flow assurance[J]. Energy & Fuels, 2009, 24(4): 2287-2293. |
25 | 盛强, 王刚, 金楠, 等. 石油沥青质的微观结构分析和轻质化[J]. 化工进展, 2019, 38(3): 1147-1159. |
SHENG Q, WANG G, JIN N, et al. Petroleum asphaltene micro-structure analysis and lightening[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1147-1159. | |
26 | MULLINS O C. The modified Yen model[J]. Energy & Fuels, 2010, 24(4): 2179-2207. |
27 | TREJO F, ANCHEYTA J, MORGAN T, et al. Characterization of asphaltenes from hydrotreated products by SEC, LDMS, MALDI, NMR, and XRD[J]. Energy & Fuels, 2007, 21(4): 2121-2128. |
28 | LONG J, XU Z H, MASLIYAH J H. Single molecule force spectroscopy of asphaltene aggregates[J]. Langmuir, 2007, 23(11): 6182-6190. |
29 | LU G W, LI Y F, SONG H, et al. Micromechanisrn of petroleum asphaltene aggregation[J]. Petroleum Exploration and Development, 2008, 35(1): 67-72. |
30 | PACHECO SANCHEZ J H, ZARAGOZA I P, et al. Preliminary study of the effect of pressure on asphaltene disassociation by molecular dynamics[J]. Petroleum Science and Technology, 2004, 22(7/8): 927-942. |
31 | 韩善鹏, 贾治渊, 赵芸黎, 等. 板北油田不加热集油问题研究[J]. 北京石油化工学院学报, 2018, 26(2): 56-60. |
HAN S P, JIA Z Y, ZHAO Y L, et al. Study of gathering pipelines unheated operation in Banbei oilfield[J]. Journal of Beijing Institute of Petrochemical Technology, 2018, 26(2): 56-60. | |
32 | 陈良, 张庆, 蒋宇.稠油不加热集输技术现状与应用探讨[J]. 天然气与石油, 2010, 28(1): 6-9. |
CHEN L, ZHANG Q, JIANG Y. Current station of unheated heavy oil gathering and transportation technology and its application[J]. Natural Gas and Oil, 2010, 28(1): 6-9. | |
33 | 敬加强, 孟江, 吕黎涛. 垦东18稠油乳化输送技术的综合评价[J]. 油气储运, 2004(5): 8-12. |
JING J Q, MENG J, LÜ L T. Comprehensive evaluation on the technology of Kendong 18 viscous crude oils transported by oil-in-water emulsion[J]. Oil & Gas Storage and Transportation, 2004(5): 8-12. | |
34 | 朱战军, 林壬子, 汪双清. 稠油主要族组分对其黏度的影响[J]. 新疆石油地质, 2004(5): 512-513. |
ZHU Z J, LIN R Z, WANG S Q. The influence of heavy oil composition on its viscosity[J]. Xinjiang Petroleum Geology, 2004(5): 512-513. | |
35 | 刘晓燕, 王德喜, 韩国有, 等. 特高含水采油期安全混输温度界限试验研究[J]. 石油学报, 2005(3): 102-105. |
41 | SINGH P, VENKATESAN R, FOGLER H S, et al. Formation and aging of incipient thin film wax-oil gels[J]. AIChE Journal, 2000, 46(5): 1059-1074. |
42 | 刘晓燕, 李友行, 李晓庆, 等. 胶凝原油颗粒变形的数值模拟研究[J]. 工程热物理学报, 2015, 36(3): 551-554. |
LIU X Y, LI Y X, LI X Q, et al. Numerical simulation study on deformation of gel crude oil particle[J]. Journal of Engineering Thermophysics, 2015, 36(3): 551-554. | |
43 | VISINTIN R F G, LOCKHART T P, LAPASIN R, et al. Structure of waxy crude oil emulsion gels[J]. Journal of Non Newtonian Fluid Mechanics, 2008, 149(1): 34-39. |
44 | 王耀, 李宏, 郭洛方. 钢液中球状夹杂物颗粒受力情况的数值模拟[J]. 北京科技大学学报, 2013, 35(11): 1437-1442. |
WANG Y, LI H, GUO L F. Numerical simulation of the force condition of spherical inclusion particles in liquid steel[J]. Chinese Journal of Engineering, 2013, 35(11): 1437-1442. | |
45 | CHINYOKA T, RENARDY Y, RENARDY M, et al. Two-dimensional study of drop deformation under simple shear for Oldroyd B liquids[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 130(1): 45-56. |
46 | DAVIES J T. Calculation of critical velocities to maintain solids in suspension in horizontal pipes[J]. Chemical Engineering Science, 1987, 42(7): 1667-1670. |
47 | QUAN S, SCHMID D P. Direct numerical study of a liquid droplet impulsively accelerated by gaseous flow[J]. Physics of Fluids, 2006, 18(10): 102103. |
48 | 许卫疆, 车得福, 徐通模. 非球形颗粒的阻力系数与升力系数的数值求解[J]. 西安交通大学学报, 2006, 40(3): 298-301. |
XU W J, CHE D F, XU T M. Drag and lift forces acting on rotational nonspherical particles[J]. Journal of Xi'an Jiaotong University, 2006, 40(3): 298-301. | |
49 | 魏利平, 江国栋, 滕海鹏. 双组分黏性颗粒相间曳力模型[J]. 工程热物理学报, 2019, 40(1): 114-117. |
WEI L P, JIANG G D, TENG H P. Cohesive particle-particle drag model[J]. Journal of Engineering Thermophysics, 2019, 40(1): 114-117. | |
50 | 张迪, 罗琦, 黄伟, 等. 基于动态模拟与比例控制的液滴曳力系数计算方法研究[J]. 核动力工程, 2015, 36(s2): 64-68. |
ZHANG D, LUO Q, HUANG W, et al. Study on calculation method for droplet drag coeffient based on dynamic simulation and P control[J]. Nuclear Power Engineering, 2015, 36(s2): 64-68. | |
51 | 赵辰辰. 单颗粒胶凝原油水力悬浮输送的数值模拟研究[D]. 大庆: 东北石油大学, 2014. |
ZHAO C C. Numerical simulation research on single suspension conveying gelled crude oil[D]. Daqing: Northeast Petroleum University, 2014. | |
52 | 李友行. 胶凝原油颗粒运动规律和变形特征的数值模拟研究[D]. 大庆: 东北石油大学, 2015. |
LI Y X. Numerical simulation study on motion law and deformation characteristics of gelled crude oil particle[D]. Daqing: Northeast Petroleum University, 2015. | |
53 | 刘晓燕, 赵辰辰, 李晓庆, 等. 油水两相间界面张力系数对胶凝原油单颗粒运动状态影响的数值模拟研究[J]. 当代化工, 2014, 43(2): 301-304. |
LIU X Y, ZHAO C C,LI X Q, et al. Numerical simulation on influence of interfacial tension coefficient of water-oil two phase flow on the gelled crude oil particle motion state[J]. Contemporary Chemical Industry, 2014, 43(2): 301-304. | |
54 | 范伟. 胶凝原油水力悬浮多相流动特性研究[D]. 大庆: 东北石油大学, 2014. |
FAN W. Study on hydraulic suspension conveying multiphase flow characteristics of gelled crude oil[D]. Daqing: Northeast Petroleum University, 2014. | |
55 | 李晓庆, 刘晓燕, 李友行. 管内单颗粒胶凝原油运动敏感性分析[J]. 工程热物理学报, 2016, 37(3): 533-538. |
LI X Q, LIU X Y, LI Y X. Motion sensitivity analysis of single gelled oil particle in a pipe[J]. Journal of Engineering Thermophysics, 2016, 37(3): 533-538. | |
56 | BUCKLEY J S, MORROW N R. An overview of crude oil adhesion phenomena[J]. Physical Chemistry of Colloids and Interfaces in Oil Production, 1992(5): 39-45. |
57 | BUCKLEY J S, LIU Y, MONSTERLEET S. Mechanisms of wetting alteration by crude oils[J]. SPE Journal, 1998, 3(1): 54-61. |
58 | 赵鹏飞, 王武昌, 李玉星. 流动体系下油基天然气水合物颗粒管壁黏附机制[J]. 油气储运, 2016, 35(5): 482-487. |
ZHAO P F, WANG W C, LI Y X. Pipe wall adhesion mechanism of natural gas hydrate particles in oil-dominated flowlines[J]. Oil & Gas Storage and Transportation, 2016, 35(5): 482-487. | |
59 | SILVA R C R, MOHAMED R S, BANNWART A C. Wettability alteration of internal surfaces of pipelines for use in the transportation of heavy oil via core-flow[J]. Journal of Petroleum Science and Engineering, 2006, 51(1): 17-25. |
60 | VISINTIN R F G, LOCKHART T P, LAPASIN R, et al. Structure of waxy crude oil emulsion gels[J]. Journal of Non Newtonian Fluid Mechanics, 2008, 149(1): 34-39. |
61 | LI S, HUANG Q Y, HE M, et al. Effect of water fraction on rheological properties of waxy crude oil emulsions[J]. Journal of Dispersion Science and Technology, 2014, 35(8): 1114-1125. |
62 | SUN G Y, ZHANG J J, LI H Y. Structural behaviors of waxy crude oil emulsion gels[J]. Energy & Fuels, 2014, 28(6): 3718-3729. |
63 | 国丽萍, 王磊, 宋宇波. W/O 型含蜡原油乳状液屈服特性研究[J]. 科学技术与工程, 2011, 11(18): 4372-4376. |
GUO L P, WANG L, SONG Y B. Study on pour point characteristics of waxy crude water-in-oil emulsions[J]. Science Technology and Engineering, 2011, 11(18): 4372-4376. | |
64 | RØNNINGSEN H P. Production of waxy oils on the norwegian continental shelf: experiences, challenges, and practices[J]. Energy & Fuels, 2012, 26(7): 4124-4136. |
65 | TRALLERO J L, INTEVEP S A, SARICA C, et al. A study of oil water flow patterns in horizontal pipes[J]. SPE Production & Operations, 1997, 12(3): 165-172. |
66 | VIELMA M A, ATMACA S, SARICA C, et al. Characterization of oil/water flows in horizontal pipes[J]. SPE Projects Facilities & Construction, 2008, 3(4): 1-21. |
67 | OLIVEIRA R C, BORDALO S N. Experimental study of oil/water flow with paraffin precipitation in subsea pipelines[J]. PLoS One, 2007, 6(8): 685-685. |
68 | FAN K, HUANG Q, LI S, et al. The wax deposition rate of water-in-crude oil emulsions based on the laboratory flow loop experiment[J]. Journal of Dispersion Science and Technology, 2017, 38(1): 11. |
69 | BRUNO A, SARICA C, CHEN H. Paraffin deposition during the flow of water in oil and oil in water dispersions in pipes[C]// Society of Petroleum Engineers. Denver, 2008: 340-350. |
70 | SOEDARMO A A, DARABOINA N, SARICA C. Validation of wax deposition models with recent laboratory scale flow loop experimental data[J]. Journal of Petroleum Science & Engineering, 2017, 149: 351-366. |
71 | SINGH A, PANACHAROENSAWAD E, SAROCA C. A mini pilot-scale flow loop experimental study of turbulent flow wax deposition by using a natural gas condensate[J]. Energy & Fuels, 2017, 31(3): 2457-2478. |
72 | 艾广智, 李艺明, 孙青峰, 等. 用转轮流动模拟器测定气液混输管道中原油析蜡温度[J]. 油田化学, 2000(2): 181-183. |
AI G Z, LI X Y, SUN Q F, et al. Determining wax precipitation point of crude oil in flowing gas/oil two-phase mixture by using rotating wheel flow simulator[J]. Oilfield Chemistry, 2000(2): 181-183. | |
73 | 吴迪, 孙青峰, 艾广智. 用转轮流动模拟器测定集油温度下限[J]. 油气田地面工程, 1999(6): 34-35, 77. |
WU D, SUN Q F, AI G Z. Application of turning wheel flowing simulator in determination of oil-gathering temperature limits[J]. Oil-Gas Field Surface Engineering, 1999(6): 34-35, 77. | |
74 | 林森, 吴迪, 孟祥春, 等. 转轮流动模拟器在原油降凝剂评价中的应用[J]. 油气储运, 1999(11): 47-50. |
LIN S, WU D, MENG X C, et al. The application of the wheel simulator in the evaluation of crude oil pour point depressant[J]. Oil & Gas Storage and Transportation, 1999(11): 47-50. | |
75 | COUTO G H, CHEN H, DELLECASE E, et al. An investigation of two-phase oil/water paraffin deposition[J]. SPE Production and Operations, 2008, 23(1): 49-55. |
76 | CORRERA S. Modeling wax diffusion in crude oils: the cold finger device[J]. Applied Mathematical Modelling, 2007, 31(10): 2286-2298. |
77 | ZHANG Y, GONG J, REN Y F, et al. Effect of emulsion characteristics on wax deposition from water-in-waxy crude oil emulsions under static cooling conditions[J]. Energy & Fuels,2010, 24(2): 1146-1155. |
78 | ZOUGARI M I. Novel organic solids deposition and control device for live-oils: design and applications[J]. Energy & Fuels, 2006, 20(4): 1656-1663. |
79 | ZOUGARI M I. Shear driven crude oil wax deposition evaluation[J]. Journal of Petroleum Science and Engineering, 2010, 70(1/2): 28-34. |
80 | 张莹. 常温集输高含水稠油粘壁机理研究[D]. 北京: 中国石油大学(北京), 2018. |
ZHANG Y. Study on the sticking wall mechanism of high water-cut heavy oil[D]. Beijing: China University of Petroleum (Beijing), 2018. | |
81 | 黄启玉, 毕权, 李男. 油水两相流蜡沉积研究进展[J]. 化工进展, 2016, 35(s1): 69-74. |
HUANG Q Y, BI Q, LI N. Research progress of wax deposition in oil-water two-phase flow[J]. Chemical Industry and Engineering Progress, 2016, 35(s1): 69-74. | |
82 | 檀为建, 崔艳丽, 李娇, 等. 西柳站高含水油井常温集输温度界限试验研究[J]. 油气田地面工程, 2018, 37(6): 19-25. |
TAN W J, CUI Y L, LI J, et al. Experimental study on temperature limits of normal- temperature gathering and transportation in high water-cut oil wells of Xiliu station[J]. Oil-Gas Field Surface Engineering, 2018, 37(6): 19-25. |
[1] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[2] | 汪鹏, 张洋, 范兵强, 何登波, 申长帅, 张贺东, 郑诗礼, 邹兴. 高碳铬铁盐酸浸出过程工艺及动力学[J]. 化工进展, 2023, 42(S1): 510-517. |
[3] | 刘阳, 王云刚, 修浩然, 邹立, 白彦渊. 基于动力学分析的核桃壳最佳炭化工艺[J]. 化工进展, 2023, 42(S1): 94-103. |
[4] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[5] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[6] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[7] | 郭晋, 张耕, 陈国华, 朱鸣, 谭粤, 李蔚, 夏莉, 胡昆. 车载液氢气瓶设计技术的研究进展[J]. 化工进展, 2023, 42(8): 4221-4229. |
[8] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[9] | 乔旭, 张竹修. 化工本征安全技术发展路径的思考与探索[J]. 化工进展, 2023, 42(7): 3319-3324. |
[10] | 索寒生, 贾梦达, 宋光, 刘东庆. 数字孪生技术助力石化智能工厂[J]. 化工进展, 2023, 42(7): 3365-3373. |
[11] | 吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382. |
[12] | 王俊杰, 潘艳秋, 牛亚宾, 俞路. 分子水平催化重整装置模型构建及应用[J]. 化工进展, 2023, 42(7): 3404-3412. |
[13] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[14] | 汪嘉欣, 潘勇, 熊欣怡, 万晓月, 王建超. 甲苯一步催化硝化制备二硝基甲苯反应过程及危险性[J]. 化工进展, 2023, 42(7): 3420-3430. |
[15] | 杨许召, 李庆, 袁康康, 张盈盈, 韩敬莉, 吴诗德. 含Gemini离子液体低共熔溶剂热力学性质[J]. 化工进展, 2023, 42(6): 3123-3129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |