1 |
石祖梁, 李想, 王久臣, 等. 中国秸秆资源空间分布特征及利用模式[J].中国人口·资源与环境, 2018, 28(s1): 202-205.
|
|
SHI Zuliang, LI Xiang, WANG Jiucheng, et al. Thespatial distribution characteristics and utilization model of crop straw in China [J]. China Population, Resources and Environment, 2018, 28(s1): 202-205.
|
2 |
杭世珺, 傅涛, 戴晓虎, 等. 技术路线没有走通,产业没有融通,政策缺乏贯通污泥出路困境如何破?[J]. 环境经济, 2019(2): 34-39.
|
|
HANG Shijun, FU Tao, DAI Xiaohu, et al. The technical route has not been communicated, the industry has not been integrated, and the policy lacks the way to break through the sludge[J]. Environmental Economy, 2019(2): 34-39.
|
3 |
DEVLIN D C, ESTEVES S R R, DINSDALE R M, et al. The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge[J]. Bioresource Technology, 2011, 102(5): 4076-4082.
|
4 |
LI R, CHEN S, LI X. Anaerobic co-digestion of kitchen waste and cattle manure for methane production[J]. Energy Sources Part A: Recovery Utilization & Environmental Effects, 2009, 31(20): 1848-1856.
|
5 |
GELEGENIS J, GEORGAKAKIS D, ANGELIDAKI I, et al. Optimization of biogas production from olive-oil mill wastewater, by co-digesting with diluted poultry-manure[J]. Applied Energy, 2007, 84(6): 646-663.
|
6 |
XU S, SELVAM A, KARTHIKEYAN O P, et al. Responses of microbial community and acidogenic intermediates to different water regimes in a hybrid solid anaerobic digestion system treating food waste[J]. Bioresour. Technol., 2014, 168: 49-58.
|
7 |
NING J, ZHOU M D, PAN X F, et al. Simultaneous biogas and biogas slurry production from co-digestion of pig manure and corn straw: performance optimization and microbial community shift[J]. Bioresource Technology, 2019, 282: 37-47.
|
8 |
任南琪,王爱杰. 厌氧生物技术原理与应用[M]. 北京: 化学工业出版社, 2004: 30-31.
|
|
REN N Q, WANG A J. The method and technology of anaerobic digestion[J]. Beijing: Chemistry Industry Press, 2004: 30-31.
|
9 |
CALLAGHAN F J, WASE D A J, THAYANIYHY K, et al. Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure[J]. Biomass Bioenergy, 2002, 22(1): 71-77.
|
10 |
CHEN Y D, ZHAO Z Y, ZOU H J, et al. Digestive performance of sludge with different crop straws in mesophilic anaerobic digestion[J]. Bioresource Technology, 2019, 289: 121595.
|
11 |
PARAWIRA W, MURTO M, READ J S, et al. Volatile fatty acid production during anaerobic mesophilic digestion of solid potato waste[J]. J. Chem. Technol. Biotechnol., 2004, 79: 673-677.
|
12 |
MIRON Y, ZEEMAN G, LIER J Bet al VAN. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems[J]. Water Res., 2000, 34: 1705-1713.
|
13 |
BARLINDHAUG J, ØDEGAARD H. Thermal hydrolysis for the production of carbon source for denitrification[J]. Water Sci. Technol., 1996, 34: 371-378.
|
14 |
CHANDRA R, TAKEUCHI H, HASEGAWA T. Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production[J]. Renew. Sust. Energ. Rev., 2012, 16(3): 1462-1476.
|
15 |
LI Y, JIN Y, LI H, et al. Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste[J]. Appl. Energy, 2018, 213: 136-147.
|
16 |
FITAMO T, TREU L, BOLDRIN A, et al. Microbial population dynamics in urban organic waste anaerobic co-digestion with mixed sludge during a change in feedstock composition and different hydraulic retention times[J]. Water Res., 2017, 118: 261-271.
|
17 |
JANG H M, HA H, KIM M S, et al. Effect of increased load of high-strength food wastewater in thermophilic and mesophilic anaerobic co-digestion of waste activated sludge on bacterial community structure[J]. Water Res., 2016, 99: 140-148.
|
18 |
LIU Y, WACHEMO A C, YUAN H R, et al. Anaerobic digestion performance and microbial community structure of corn stover in three-stage continuously stirred tank reactors[J]. Bioresource Technology, 2019, 287: 121339.
|
19 |
LU L, XING D F, REN N Q. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge[J]. Water Research, 2012, 46(7): 2425-2434.
|
20 |
ZHENG X, CHENG Y G, LI X, et al. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production[J]. Environmental Science & Technology, 2013, 47(9): 4262-4268.
|
21 |
SRILES M E, HOLZAPFEL W H. Lactic acid bacteria of foods and their current taxonomy[J]. Int. J. Food Microbiol., 1997, 36(1): 1-29.
|
22 |
BALK M, WEIJMA J, STAMS A J M. Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor[J]. Int. J. Syst. Evol. Microbiol., 2002, 52(4): 1361-1368.
|
23 |
DONG X, XIN Y, JIAN W, et al. Bifidobacterium thermacidophilum sp. nov., isolated from an anaerobic digester[J]. Int. J. Syst. Evol. Microbiol., 2000, 50(1): 119-125.
|
24 |
YAMADA T, SEKIGUCHI Y, HANADA S, et al. Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov.,sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum chloroflexi[J]. Int. J. Syst. Evol. Microbiol., 2006, 56(6): 1331-1340.
|
25 |
VREELAND R, LITCHFIELD C, MARTIN E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria[J]. Int. J. Syst. Bacteriol., 1980, 30: 485-495.
|
26 |
YI J, DONG B, JIN J. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis[J]. PloS One, 2014, 9: e102548.
|
27 |
HIRAISHI A, IWASAKI M, SHINJO H. Terminal restriction pattern analysis of 16S rRNA genes for the characterization of bacterial communities of activated sludge[J]. J. Biosci. Bioeng., 2000, 90: 148-156.
|
28 |
YUE Z, CHEN R, YANG F, et al. Effects of dairy manure and corn stover co-digestion on anaerobic microbes and corresponding digestion performance[J]. Bioresour. Technol., 2013, 128: 65-71.
|
29 |
YANG Y, YU K, XIA Y, et al. Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants[J]. Appl. Microbiol. Biotechnol., 2014, 98: 5709-5718.
|
30 |
ZOU H, CHEN Y, SHI J, et al. Mesophilic anaerobic co-digestion of residual sludge with different lignocellulosic wastes in the batch digester[J]. Bioresour. Technol., 2018, 268: 371-381.
|
31 |
XIAN C Q, MENG M J, XIAO G W, et al. Response of treatment performance and microbial community structure to the temporary suspension of an industrial anaerobic bioreactor[J]. Science of the Total Environment, 2019, 646: 229-237.
|
32 |
FLINT H J, BAYER E A, RINCON M T, et al. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis[J]. Nature Reviews Microbiology, 2008, 6(2): 121-131.
|
33 |
FONTES C M, GILBERT H J. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates[J]. Annual Review of Biochemistry, 2010, 79(1): 655-681.
|
34 |
KOH A, DE VADDER F, KOVATCHEVA-DATHARY P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6): 1332-1345.
|
35 |
BESTEN G DEN, EUNEN K VAN, GROEN A K, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. The Journal of Lipid Research, 2013, 54(9): 2325-2340.
|
36 |
MORRISON M, MIRON J. Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil-proteins?[J]. FEMS Microbiol. Lett., 2000, 185(2): 109-115.
|
37 |
ZHANG L, CHUNG J, JIANG Q, et al. Characteristics of rumen microorganisms involved in anaerobic degradation of cellulose at various pH values[J]. RSC Adv., 2017, 7(64): 40303-40310.
|
38 |
ZHIVIN O, DASSA B, MORAIS S, et al. Unique organization and unprecedented diversity of the Bacteroides (Pseudobacteroides) cellulosolvens cellulosome system[J]. Biotechnol. Biofuels., 2017, 10: 211.
|
39 |
HE Y, LI M, PERUMAL V. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments[J]. Nat. Microbiol., 2016, 1(6): 16035.
|
40 |
BECKER K W, ELLING F J, YOSHINAGA M Y, et al. Unusual butane-and pentanetriol-based tetraether lipids in Methanomassiliicoccus luminyensis, a representative of the seventh order of methanogens[J]. Appl. Environ. Microbiol., 2016, 82(15): 4505-4516.
|
41 |
KRONINGER L, BERGER S, WELTE C, et al. Evidence for the involvement of two heterodisulfide reductases in the energy-conserving system of Methanomassiliicoccus luminyensis[J]. FEBS J., 2016, 283(3): 472-483.
|
42 |
MATA-ALVAREZ J, DOSTA J, ROMERO-GUIZA M S, et al. A critical review on anaerobic co-digestion achievements between 2010 and 2013[J]. Renew. Sust. Energ. Rev., 2014, 36: 412-427.
|
43 |
HOLMES D E, NEVIN K P, WOODARD T L, et al. Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell[J]. Int. J. Syst. Evol. Microbiol., 2007, 57(4): 701-707.
|
44 |
IINO T, Sakamoto M, Ohkuma M. Prolixibacter denitrificans sp. nov., an iron-corroding, facultatively aerobic, nitrate-reducing bacterium isolated from crude oil, and emended descriptions of the genus Prolixibacter and Prolixibacter bellariivorans[J]. Int. J. Syst. Evol. Microbiol., 2015, 65: 2865-2869.
|
45 |
MCILROY S J, KIRKEGAARD R H, DUEHOIM M S, et al. Culture-independent analyses reveal novel Anaerolineaceae as abundant primary fermenters in anaerobic digesters treating waste activated sludge[J]. Frontiers in Microbiology, 2017, 8: 1134.
|
46 |
YAMADA T, IMACHI H, OHASHI A, et al. Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylumchloroflexi isolated from methanogenic propionate-degrading consortia[J]. Int. J. Syst. Evol. Microbiol., 2007, 57(10): 2299-2306.
|