化工进展 ›› 2019, Vol. 38 ›› Issue (11): 4815-4824.DOI: 10.16085/j.issn.1000-6613.2019-0228

• 化工过程与装备 • 上一篇    下一篇

基于条件场景的不确定性石化供应链优化方法

臧佩娴1,2(),罗祎青1,2,3,袁希钢1,2,3()   

  1. 1. 化学工程联合国家重点实验室(天津大学),天津 300072
    2. 天津大学化工学院,天津 300072
    3. 天津大学;化学工程研究所,天津 300072
  • 收稿日期:2019-02-18 出版日期:2019-11-05 发布日期:2019-11-05
  • 通讯作者: 袁希钢
  • 作者简介:臧佩娴(1993—),女,硕士研究生,研究方向为系统工程。E-mail:2016207144@tju.edu.cn
  • 基金资助:
    国家自然科学基金(21676183)

Conditional scenario based approach to the optimization of petrochemical supply chain with uncertainty

Peixian ZANG1,2(),Yiqing LUO1,2,3,Xigang YUAN1,2,3()   

  1. 1. State Key Laboratory of Chemical Engineering (Tianjin University), Tianjin 300072, China
    2. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    3. Chemical Engineering Research Center, Tianjin University, Tianjin 300072, China
  • Received:2019-02-18 Online:2019-11-05 Published:2019-11-05
  • Contact: Xigang YUAN

摘要:

针对产品需求及其价格存在不确定性的石化供应链计划层最优化问题,本文建立了一种基于条件场景的石化供应链最优化方法。用多个离散场景近似随机变量概率的连续分布,根据随机变量的概率分布特征,对场景发生的概率进行参数估计,进而建立了基于场景的两阶段混合整数线性规划(MILP)模型。利用基于场景的优化结果随离散网格数增加而逐渐趋近连续的随机优化结果这一规律,给出了获得最佳离散网格数的方法,实现了计算时间成本与计算精度之间的平衡。在此基础上引入条件概率方法,利用两个随机变量间的相关性,建立了以产品价格及其需求量为不确定性的石化供应链优化方法。结果表明,与传统未考虑随机变量间相关性的一般场景划分方法相比,本文基于条件场景的随机优化方法可以更快地获得最佳场景数目,进而有效降低了计算量。

关键词: 石化供应链, 条件场景方法, 参数估值, 模拟, 随机优化, 系统工程

Abstract:

A conditional scenario based approach was proposed for the optimization of tactical level petrochemical supply chain with uncertain product demands and their prices. Based on the probability distributions of the stochastic variables, estimation on the parameters for the probability of each scenario was conducted, and a series of discretized scenarios were introduced to approximate the continuous optimization problem, and a scenario based two-stage mixed integer linear programming (MILP) model was formulated. Result of this optimization tended to approach the continuous optimization when the number of scenario increased, and based on this rule, a method to find the optimal number of scenarios was proposed, so balance between the calculation accuracy and computation time was achieved. Conditional scenario method was further introduced with regard to the correlation of two stochastic variables. Results showed that, compared with traditional method with no variables correlated, the conditional scenario based stochastic optimization method could find the optimal number of scenarios more quickly, and effectively reduce the computational effort.

Key words: supply chain of petrochemical industry, conditional expectation scenarios, parameter estimation, simulation, stochastic optimization, systems engineering

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn