1 |
王明华, 李政, 倪维斗 . “双气头”多联产中试装置的流程设计研究[J]. 煤炭转化,2007,30(2): 48-52.
|
|
WANG Minghua , LI Zheng , NI Weidou . Research on flowsheet design of medium scale double gas polygeneration device[J]. Coal Conversion,2007,30(2): 48-52.
|
2 |
王灵梅, 李政, 倪维斗, 等 . “双气头”多联产系统的能值评估[J]. 动力工程学报, 2010,30(10): 798-803.
|
|
WANG Lingmei , LI Zheng , NI Weidou ,et al . Energy evaluation of double gas polygeneration systems[J]. Journal of Chinese Society of Power Engineering,2010,30(10): 798-803.
|
3 |
谢克昌, 张永发, 赵炜 . “双气头”多联产系统基础研究——焦炉煤气制备合成气[J]. 能源与节能, 2008(2): 10-12.
|
|
XIE Kechang , ZHANG Yongfa , ZHAO Wei . Basic research on the "double head" polygeneration system—Preparation of syngas from coke oven gas[J]. Energy and Energy Conservation, 2008(2): 10-12.
|
4 |
LIN H , JIN H G , GAO L , et al . A polygeneration system for methanol and power production based on coke oven gas and coal gas with CO2 recovery[J]. Energy, 2014, 74(2): 174-180.
|
5 |
YI Q , GONG M H , HUANG Y , et al . Process development of coke oven gas to methanol integrated with CO2, recycle for satisfactory techno-economic performance[J]. Energy, 2016, 112:618-628.
|
6 |
MAN Y , YANG S Y , QIAN Y , et al . Conceptual design of coke-oven gas assisted coal to olefins process for high energy efficiency and low CO2 emission[J]. Applied Energy, 2014, 133:197-205.
|
7 |
HUANG H , YANG S , CUI P . Design concept for coal-based polygeneration processes of chemicals and power with the lowest energy consumption for CO2 capture[J]. Energy Conversion & Management, 2018, 157:186-194.
|
8 |
GHODOOSI F , KHOSRAVI-NIKOU M R , SHARIATI A . Mathematical modeling of reverse water-gas shift reaction in a fixed‐bed reactor[J]. Chemical Engineering & Technology, 2017, 40(3): 598-607.
|
9 |
刘霞 . 煤制甲醇过程的低温余热利用与碳减排工艺研究[D]. 广州: 华南理工大学, 2016.
|
|
LIU Xia . The study on low temperature waste heat utilization and carbon reduction of coal-based methanol process[D]. Guangzhou: South China University of Technology, 2016
|
10 |
彭丽娟 . 焦炉气辅助煤气化制甲醇系统概念设计[D]. 广州: 华南理工大学, 2014.
|
|
PENG Lijuan . Conceptual design of coke-oven gas assisted coal gasification to methanol process[D]. Guangzhou: South China University of Technology, 2014.
|
11 |
葛志颖, 郭炜 . 焦炉气催化部分氧化制甲醇氢碳比优化与CO2减排[J]. 化工设计通讯, 2011, 37(2): 72-74.
|
|
GE Zhiying , GUO Wei . Optimization of hydrogen-carbon ratio in methanol production from COG catalytic partial oxidation and CO2 emission reduction[J]. Chemical Engineering Design Communications, 2011, 37(2): 72-74.
|
12 |
ZHAN M C , WANG W D , TIAN T F , et al . Catalytic partial oxidation of methane over perovskite La4Sr8Ti12O38- δ solid oxide fuel cell (SOFC) anode material in an oxygen-permeable membrane reactor[J]. Energy & Fuels, 2010(24): 764-771.
|
13 |
BERMÚDEZ J M , FERRERA-LORENZO N , LUQUE S , et al . New process for producing methanol from coke oven gas by means of CO2 reforming. Comparison with conventional process[J]. Fuel Processing Technology, 2013, 115(11): 215-221.
|
14 |
COURSON C , MAKAGA E , PETIT C , et al . Development of Ni catalysts for gas production from biomass gasification. Reactivity in steam-and dry -reforming[J]. Catalysis Today, 2000, 63(2): 427-437.
|
15 |
ABASHAR M E E . Coupling of steam and dry reforming of methane in catalytic fluidized bed membrane reactors[J]. International Journal of Hydrogen Energy, 2004, 29(8): 799-808.
|
16 |
BHAVSAR S , NAJERA M , VESER G . Chemical looping dry reforming as novel, intensified process for CO2 activation[J]. Chemical Engineering & Technology, 2012, 35(7): 1281-1290.
|
17 |
NAJERA M , GRACE H , BHAVSAR S , et al . CO2 activation via chemical Looping dry reforming[C]//23rd North American Catalysis Society Meeting, 2013.
|
18 |
ZENG Y , LIU S , MEI D , et al . Plasma-catalytic dry reforming of methane over Al2O3 supported metal catalysts[C]//IEEE International Conference on Plasma Sciences, 2015:80-87.
|
19 |
CHEN L , GANGADHARAN P , LOU H H . Sustainability assessment of combined steam and dry reforming versus tri-reforming of methane for syngas production[J]. Asia-Pacific Journal of Chemical Engineering, 2018. DOI:13.10.1002/apj.2168.
DOI
URL
|
20 |
YANG S , YANG Q , YI M , et al . Conceptual design and analysis of a natural gas assisted coal-to-olefins process for CO2 reuse[J]. Industrial & Engineering Chemistry Research, 2013, 52(40): 14406-14414.
|
21 |
LUYBEN W L . Design and control of the dry methane reforming process[J]. Industrial & Engineering Chemistry Research, 2014, 53(37): 14423-14439.
|
22 |
GANGADHARAN P , KANCHI K C , LOU H H . Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane[J]. Chemical Engineering Research & Design, 2012, 90(11): 1956-1968.
|
23 |
BARELLI L , BIDINI G , GALLORINI F , et al . Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review[J]. Energy, 2008, 33(4): 554-570.
|
24 |
XU J , FROMENT G F . Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics[J]. AIChE Journal, 1989, 35:88-96.
|
25 |
ROSTRUP-NIELSEN T . Process for the catalytic steam reforming of a hydrocarbon feedstock: AU200048635B2[P]. 2004-02-05.
|
26 |
MAN Y , YANG S Y , QIAN Y . Integrated process for synthetic natural gas production from coal and coke-oven gas with high energy efficiency and low emission[J]. Energy Conversion and Management, 2016, 117:162-170.
|
27 |
RUIZMERCADO G J , SMITH R L , GONZALEZ M A . Sustainability indicators for chemical processes:Ⅰ. Taxonomy[J]. Industrial & Engineering Chemistry Research, 2012, 51(5): 2309-2328.
|
28 |
ZHU Y , BIDDY M J , JONES S B , et al . Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading[J]. Applied Energy, 2014, 129(5): 384-394.
|
29 |
ORHAN M F , DINCER I , NATERER G F . Cost analysis of a thermochemical Cu-Cl pilot plant for nuclear-based hydrogen production[J]. International Journal of Hydrogen Energy, 2008, 33(21): 6006-6020.
|
30 |
LI Z , HU S , CHEN D , et al . Study on systems based on coal and natural gas for producing dimethyl ether[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 4101-4108.
|
31 |
YANG S , YANG Q , LI H , et al . An integrated framework for modeling, synthesis, analysis, and optimization of coal gasification-based energy and chemical processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(48): 15763-15777.
|
32 |
XIANG D , YANG S Y , QIAN Y , et al . Techno-economic performance of the coal-to-olefins process with CCS[J]. Chemical Engineering Journal, 2014, 240(6): 45-54.
|
33 |
MANTRIPRAGADA H C , RUBIN E S . Techno-economic evaluation of coal-to-liquids (CTL) plants with carbon capture and sequestration[J]. Energy Policy, 2011, 39(5): 2808-2816.
|
34 |
姜睿 . 碳交易与中国碳市场展望[J]. 中国经济报告, 2017(5): 52-56.
|
|
JIANG Rui . Carbon trading and China's carbon market outlook [J]. China Policy Review, 2017(5): 52-56.
|
35 |
张亮 . 欧洲国家环境税制度对中国碳税政策的借鉴与启示[J]. 环境与发展, 2017, 29(4): 27-29.
|
|
ZHANG Liang . European countries’ environmental tax system and its inspiration to China’s carbon tax policies[J]. Environment and Development, 2017, 29(4): 27-29.
|
36 |
YUAN M , METCALF G E , REILLY J , et al . The revenue implications of a carbon tax[R/OL]. 2017. .
|