[1] 江宇, 黄溢, 葛天舒, 等. 新型热湿独立控制空调系统的实验研究[J]. 化工学报, 2014, 65(s2):188-194. JIANG Yu, HUANG Yi, GE Tianshu, et al. Novel temperature and humidity independent control system[J]. CIESC Journal, 2014, 65(s2):188-194.
[2] 李浩亮, 徐晓军, 赵志伟, 等. 基于计算流体力学的高大空间温湿度控制模型的建立[J]. 烟草科技, 2017, 50(6):73-80. LI H L, XU X J, ZHAO Z W, et al. Modeling of temperature and humidity control in high and large space based on computational fluid dynamics[J]. Tobacco Science & Technology, 2017, 50(6):73-80.
[3] 张小芬. 卷烟厂空调系统负荷特性及新型中央空调系统研究[D]. 上海:东华大学, 2012. ZHANG X F. Studies on load features of air conditioning system and novel central air conditioning system in cigarette factory[D]. Shanghai:Donghua University, 2012.
[4] 段未, 马国远, 周峰. 多回路泵驱动回路热管系统的换热特性[J]. 化工学报, 2017, 68(1):104-111. DUAN Wei, MA Guoyuan, ZHOU Feng. Heat transfer characteristics of multi-loop pump-driven loop heat pipe system[J]. CIESC Journal, 2017, 68(1):104-111.
[5] 段未, 马国远, 周峰. 泵驱动回路热管能量回收装置性能的影响因素[J]. 化工学报, 2016, 67(10):4146-4152. DUAN Wei, MA Guoyuan, ZHOU Feng. Factors influencing energy recycle performance of pump-driven heat pipe loop device[J]. CIESC Journal, 2016, 67(10):4146-4152.
[6] RAMADAN M, ALI S, BAZZI H, et al. New hybrid system combining TEG, condenser hot air and exhaust airflow of all-air HVAC systems[J]. Case Studies in Thermal Engineering, 2017, 10:154-160.
[7] KHALED M, RAMADAN M. Heating fresh air by hot exhaust air of HVAC systems[J]. Case Studies in Thermal Engineering, 2016, 8:398-402.
[8] CUCE P M, CUCE E. Toward cost-effective and energy-efficient heat recovery systems in buildings:thermal performance monitoring[J]. Energy, 2017, 137:487-494.
[9] CUCE P M, RIFFAT S. A comprehensive review of heat recovery systems for building applications[J]. Renewable & Sustainable Energy Reviews, 2015, 47:665-682.
[10] ALONSO M J, LIU P, MATHISEN H M, et al. Review of heat/energy recovery exchangers for use in ZEBs in cold climate countries[J]. Building & Environment, 2015, 84:228-237.
[11] PLOSKIC A, WANG Q. Evaluating the potential of reducing peak heating load of a multi-family house using novel heat recovery system[J]. Applied Thermal Engineering, 2018, 130:1182-1190.
[12] 王帅. 成都地区排风热回收适宜性的动态分析[D]. 成都:西南交通大学, 2015. WANG S. Dynamic analysis of exhaust air heat recove suitability in Chengdu[D]. Chengdu:Southwest Jiaotong University, 2015.
[13] 施睿华. 上海地区公共建筑采用排风热回收装置的节能性[J]. 暖通空调, 2017, 47(9):92-95. SHI R H. Energy saving performance of exhaust air heat recovery system in Shanghai public buildings[J]. Heating Ventilating & Air Conditioning, 2017, 47(9):92-95.
[14] 刘思梦, 康国青, 李德英. 热管式排风热回收在厦门地区的适用性分析[J]. 建筑节能, 2014(8):56-59. LIU S M, KANG G Q, LI D Y, et al. Applicability analysis of heat pipe type exhaust heat recovery for buildings in Xiamen[J]. Building Energy Efficiency, 2014(8):56-59.
[15] ZHANG Ziyang, ZHANG Chunlu, GE Meicai, et al. A frost-free dedicated outdoor air system with exhaust air heat recovery[J]. Applied Thermal Engineering, 2018, 128:1041-1050.
[16] 周智勇, 吴青青, 韦中师, 等. 二次热回收热管式空调系统[J]. 化工学报, 2017, 68(5):1823-1832. ZHOU Z Y, WU Q Q, WEI Z S, et al. Secondary heat recovery heat pipe air conditioning system[J]. CIESC Journal, 2017, 68(5):1823-1832.
[17] 钟珂, 赵敬德, 亢燕铭. 空气换热器在冷却顶板空调系统中的节能潜力[J]. 暖通空调, 2010, 40(4):125-130. ZHONG K, ZHAO J D, KANG Y M. Energy saving potential of air heat exchanger in chilled ceiling air conditioning systems[J]. Heating Ventilating & Air Conditioning, 2010, 40(4):125-130.
[18] 肖武, 王开锋, 阮雪华, 等. 序列数编码的遗传算法柔性优化多股流板翅式换热器通道排列[J]. 化工进展, 2016, 35(5):1353-1359. XIAO Wu, WANG Kaifeng, RUAN Xuehua, et al. Flexible optimization of passage arrangement for multi-stream plate-fin heat exchangers using genetic algorithm with ordinal[J]. Chemical Industry and Engineering Progress, 2016, 35(5):1353-1359.
[19] 胡金鹏, 崔国民, 胡向柏. 板翅式全热交换器的结构优化[J]. 化工进展, 2010, 29(s1):650-652. HU J P, CUI G M, HU X B. Structural optimization of a plate-fin type total heat exchanger[J]. Chemical Industry and Engineering Progress, 2010, 29(s1):650-652.
[20] CHURITTER Tösha. An investigation into the pressure drop optimisation of air-air plate-fin heat exchangers through the application of compact advanced pin surface technology[J]. Annals of Neurology, 2014, 53(2):267-270.
[21] HAZARIKA S A, DESHAMUKHYA T, BHANJA D, et al. Thermal analysis of a constructal T-shaped porous fin with simultaneous heat and mass transfer[J]. Chinese Journal of Chemical Engineering, 2017, 25(9):1121-1136.
[22] 刘景成, 张树有, 徐敬华, 等. 板翅换热器导流结构非线性映射与性能多目标优化[J]. 化工学报, 2015, 66(5):1821-1830. LIU Jingcheng, ZHANG Shuyou, XU Jinghua, et al. Non-linear mapping and multi-objective optimization of leading flow structure in plate-fin heat exchanger[J]. CIESC Journal, 2015, 66(5):1821-1830.
[23] 杨辉著, 文键, 童欣, 等. 板翅式换热器锯齿型翅片参数的遗传算法优化研究[J]. 西安交通大学学报, 2015, 49(12):90-96. YANG Huizhu, WEN Jian, TONG Xin, et al. Optimization design for offset fin in plate heat exchanger with genetic algorithm[J]. Journal of Xi'an Jiaotong University, 2015, 49(12):90-96.
[24] 史美中, 王中铮. 热交换器原理与设计[M]. 5版. 南京:东南大学出版社, 2014. SHI Meizhong, WANG Zhongzheng. Principle and design of heat exchanger[M]. 5th ed. Nanjing:Southeast University Press, 2014.
[25] 赵荣义, 范存养, 钱以明, 等. 空气调节[M]. 4版. 北京:中国建筑工业出版社, 2009. ZHAO Rongyi, FAN Cunyang, QIAN Yiming, et al. Air conditioning[M]. 4th ed. Beijing:China Architecture & Building Press, 2009.
[26] 国家发展和改革委员会. 综合能耗计算通则:GB/T2589-2016[S]. 北京:中国标准出版社, 2016. National Development and Reform Commission. General rules for calculation of comprehensive energy consumption:GB/T2589-2016[S]. Beijing:China Standard Press, 2016.
[27] 中华人民共和国住房和城乡建设部.民用建筑供暖通风与空气调节设计规范:GB50736-2012[S]. 北京:中国建筑工业出版社, 2012. Ministry of Housing and Urban and Rural Construction in People's Republic of China. Design code for heating ventilation and air conditioning of civil buildings:GB50736-2012[S]. Beijing:China Architecture & Building Press, 2012. |