[1] BLAMEY J,ANTHONY E J,WANG J,et al.The calcium looping cycle for large-scale CO2 capture[J].Progress in Energy and Combustion Science,2010,36(2):260-279.
[2] BOOT-HANDFORD M E,ABANADES J C,ANTHONY E J,et al.Carbon capture and storage update[J]. Energy & Environmental Science,2014,7(1):130-189.
[3] 乔春珍,王宝利,肖云汉.钙基CO2吸收剂循环活性衰减原因初探[J].化工学报,2010,61(3):720-724. QIAO C M,WANG B L,XIAO Y H. Activity decline of Ca-based CO2 absorbent in repetitive calcination-carbonation[J]. CIESC Journal,2010,61(3):720-724.
[4] 陈惠超,赵长遂,沈鹏.烟气中水蒸气对钙基吸收剂碳酸化的影响特性[J].化工学报,2013,64(4):1364-1372. CHEN H C,ZHAO C S,SHEN P. Effect of steam in flue gas on CO2 capture for calcium based sorbent[J]. CIESC Journal,2013,64(4):1364-1372.
[5] CHARITOS A,HAWTHORNE C,BIDWE A R,et al.Parametric investigation of the calcium looping process for CO2 capture in a 10kW th dual fluidized bed[J].International Journal of Greenhouse Gas Control,2010,4(5):776-784.
[6] COPPOLA A,SCALA F,SALATINO P,et al.Fluidized bed calcium looping cycles for CO2 capture under oxy-firing calcination conditions Part 1.Assessment of six limestones[J].Chemical Engineering Journal,2013,231:537-543.
[7] MANOVIC V,ANTHONY E J,GRASA G,et al.CO2 looping cycle performance of a high-purity limestone after thermal activation/doping[J].Energy & Fuels,2008,22(5):3258-3264.
[8] 张雷,张力,闫云飞,等. 掺杂Ce,Zr对CO2钙基吸附剂循环特性的影响[J].化工学报,2015,66(2):612-617. ZHANG L,ZHANG L,YAN Y F,et al. Effect of Ce,Zr on cyclic performance of CaO-based CO2 sorbents[J]. CIESC Journal,2015,66(2):612-617.
[9] AL-JEBOORI M J,FENNELL P S,NGUYEN M,et al. Effects of different dopants and doping procedures on the reactivity of CaO-based sorbents for CO2 capture[J].Energy & Fuels,2012,26(11):6584-6594.
[10] RIDHA F N,MANOVIC V,WU Y,et al.Pelletized CaO-based sorbents treated with organic acids for enhanced CO2 capture in Ca-looping cycles[J].International Journal of Greenhouse Gas Control,2013,17:357-365.
[11] 吴琪珑,郑瑛,罗聪,等.复合钙基CO2吸收剂的反应性能及显微结构[J].化工学报,2011,62(10):2905-2913. WU Q L,ZHEN Y,LUO C,et al. Reactivity and microstructure of synthetic CaO-based sorbents for CO2 capture[J]. CIESC Journal,2011,62(10):2905-2913.
[12] 张平平,陈惠超,段钰锋,等.溶胶凝胶合成钙基吸收剂的循环碳酸化特性[J].中国电机工程学报,2013,33(23):99-106. ZHANG P P,CHEN H C,DUAN Y F,et al. Carbonation property of calcium based sorbent synthesized by the sol-gel process[J]. Proceedings of the CSEE,2013,33(23):99-106.
[13] CHEN H,ZHANG P,DUAN Y,et al.Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol-gel process[J].Applied Energy,2016,162:390-400.
[14] CHEN H,ZHAO C. Development of a CaO-based sorbent with improved cyclic stability for CO2 capture in pressurized carbonation[J]. Chemical Engineering Journal,2011,171(1):197-205.
[15] MANOVIC V,ANTHONY E J. CaO-based pellets supported by calcium aluminate cements for high-temperature CO2 capture[J]. Environmental Science & Technology,2009,43(18):7117-7122.
[16] MANOVIC V,WU Y,HE I,et al. Spray water reactivation/pelletization of spent CaO-based sorbent from calcium looping cycles[J]. Environmental Science & Technology,2012,46(22):12720-12725.
[17] XIAO G,GRACE J R,LIM C J. Attrition characteristics and mechanisms for limestone particles in an air-jet apparatus[J]. Powder Technology,2011,207(1):183-191.
[18] KNIGHT A,Ellis N,GRACE J R,et al.CO2 sorbent attrition testing for fluidized bed systems[J].Powder Technology,2014,266:412-423.
[19] CHEN Z,GRACE J R,LIM C J. Limestone particle attrition and size distribution in a small circulating fluidized bed[J]. Fuel,2008,87(7):1360-1371.
[20] ZHANG W,LI Y,DUAN L,et al. Attrition behavior of calcium-based waste during CO2 capture cycles using calcium looping in a fluidized bed reactor[J]. Chemical Engineering Research and Design,2016,109:806-815.
[21] ERANS M,CERCIELLO F,COPPOLA A,et al. Fragmentation of biomass-templated CaO-based pellets[J]. Fuel,2017,187:388-397.
[22] WU Y,MANOVIC V,HE I,et al.Modified lime-based pellet sorbents for high-temperature CO2 capture reactivity and attrition behavior[J].Fuel,2012,96:454-461.
[23] CHEN H,ZHAO C,YANG Y,et al.CO2 capture and attrition performance of CaO pellets with aluminate cement under pressurized carbonation[J].Applied Energy,2012,91(1):334-340.
[24] SCALA F,MONTAGNARO F,SALATINO P.Attrition of limestone by impact loading in fluidized beds[J].Energy & Fuels,2007,21(5):2566-2572.
[25] SCALA F,SALATINO P.Flue gas desulfurization under simulated oxyfiring fluidized bed combustion conditions. The influence of limestone attrition and fragmentation[J].Chemical Engineering Science,2010,65(1):556-561.
[26] 李英杰,赵长遂. 钙基吸收剂循环锻烧/碳酸化反应过程特性研究[J]. 中国电机工程学报,2008,28(2):55-60. LI Y J,ZHAO C S. Carbonation characteristics in calcium-sorbents cyclic calcination/carbonation reaction process[J]. Proceedings of the CSEE,2008,28(2):55-60.
[27] SUN Z,LUO S,QI P,et al. Ionic diffusion through calcite (CaCO3) layer during the reaction of CaO and CO2[J]. Chemical Engineering Science,2012,81:164-168.
[28] RAY Y C,JIANG T S,WEN C Y. Particle attrition phenomena in a fluidized bed[J]. Powder Technology,1987,49(3):193-206.
[29] CHEN Z,LIM C J,GRACE J R. Study of limestone particle impact attrition[J]. Chemical Engineering Science,2007,62(3):867- 877. |