[1] 韩粉女, 钟秦. 燃煤烟气脱汞技术的研究进展[J]. 化工进展, 2011, 30(4):878-885. HAN F N, ZHONG Q. Research progress of removal of mercury from coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2011, 30(4):878-885.
[2] HARADA M. Minamata disease:methylmercury poisoning in Japan caused by environmental pollution[J]. Critical Reviews in Toxicology, 1995, 25(1):1-24.
[3] LI H, WU C Y, LI Y, et al. Role of flue gas components in mercury oxidation over TiO2supported MnOx-CeO2mixed-oxide at low temperature[J]. Journal of Hazardous Materials, 2012, 243:117-123.
[4] JOHARI K, SAMAN N, SONG S T, et al. Utilization of coconut milk processing waste as a low-cost mercury sorbent[J]. Ind. Eng. Chem. Res., 2013, 52(44):15648-15657.
[5] BALLESTERO D, GOMEZ-GIMENEZ C, GARCIA-DIEZ E, et al. Influence of temperature and regeneration cycles on Hg capture and efficiency by structured Au/C regenerable sorbents[J]. Journal of Hazardous Materials, 2013, 260:247-254.
[6] XIE J, QU Z, YAN N, et al. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery[J]. Journal of Hazardous Materials, 2013, 261:206-213.
[7] BARRETT M. Mercury emissions and effects-the role of coal[J]. Atmospheric Environment, 1996, 30(6):1001.
[8] OZAKI M, UDDIN M A, SASAOKA E, et al. Temperature programmed decomposition desorption of the mercury species over spent iron-based sorbents for mercury removal from coal derived fuel gas[J]. Fuel, 2008, 87(17/18):3610-3615.
[9] 任建莉, 周劲松, 骆仲泱, 等. 燃煤电站汞控制研究的新进展[J]. 热力发电, 2006, 35(8):16-20. REN J L, ZHOU J S, LUO Z Y, et al. New advancement of study on mercury control in coal fired power plants[J]. Thermal Power Generation, 2006, 35(8):16-20.
[10] WILCOX J, RUPP E, YING S C, et al. Mercury adsorption and oxidation in coal combustion and gasification processes[J]. Plos One, 2012, s 90-91(9):4-20.
[11] JAIN A, SEYED-REIHANI S A, FISCHER C C, et al. Ab initio screening of metal sorbents for elemental mercury capture in syngas streams[J]. Chemical Engineering Science, 2010, 65(10):3025-3033.
[12] STECKEL J A. Density functional theory study of mercury adsorption on metal surfaces[J]. Phys. Rev. B, 2008, 77(11).
[13] SASMAZ E, ABOUD S, WILCOX J. Hg binding on Pd binary alloys and overlays[J]. The Journal of Physical Chemistry C, 2009, 113(18):7813-7820.
[14] GAO H, LIN Y, LI Y, et al. Chemical stability and its improvement of palladium-based metallic membranes[J]. Ind. Eng. Chem. Res., 2004, 43(22):6920-6930.
[15] ABOUD S, SASMAZ E, WILCOX J. Mercury adsorption on PdAu, PdAg and PdCu alloys[J]. Main Group Chemistry, 2008, 7(3):205-215.
[16] WANG J, YU H, GENG L, et al. DFT study of Hg adsorption on M-substituted Pd (111) and PdM/γ-Al2O3 (110) (M=Au, Ag, Cu) surfaces[J]. Applied Surface Science, 2015, 355:902-911.
[17] GENG L, HAN L, CEN W, et al. A first-principles study of Hg adsorption on Pd (111) and Pd/γ-Al2O3 (110) surfaces[J]. Applied Surface Science, 2014, 321:30-37.
[18] RUNGNIM C, MEEPRASERT J, KUNASETH M, et al. Understanding synergetic effect of TiO2-supported silver nanoparticle as a sorbent for Hg0removal[J]. Chem. Eng. J., 2015, 274:132-142.
[19] LING L, FAN L, FENG X, et al. Effects of the size and Cu modulation of Pdn (n ≤ 38) clusters on Hg0 adsorption[J]. Chem. Eng. J., 2016, 308:289-298.
[20] COULING D J, NGUYEN H V, GREEN W H. Screening of metal oxides and metal sulfides as sorbents for elemental mercury at elevated temperatures[J]. Fuel, 2012, 97:783-795.
[21] GUO P, GUO X, ZHENG C. Roles of γ-Fe2O3 in fly ash for mercury removal:results of density functional theory study[J]. Applied Surface Science, 2010, 256(23):6991-6996.
[22] GUO P, GUO X, ZHENG C G. Computational insights into interactions between Hg species and alpha-Fe2O3 (001)[J]. Fuel, 2011, 90(5):1840-1846.
[23] LIU T, XUE L, GUO X, et al. DFT study of mercury adsorption on α-Fe2O3 surface:role of oxygen[J]. Fuel, 2014, 115:179-185.
[24] YANG Y, LIU J, ZHANG B, et al. Mechanistic studies of mercury adsorption and oxidation by oxygen over spinel-type MnFe2O4[J]. Journal of Hazardous Materials, 2017, 321:154-161.
[25] YANG Y, LIU J, ZHANG B, et al. Density functional theory study on the heterogeneous reaction between Hg0 and HCl over spinel-type MnFe2O4[J]. Chem. Eng. J., 2016, 308:897-903.
[26] JI W, SHEN Z, TANG Q, et al. A DFT study of Hg0 adsorption on Co3O4 (110) surface[J]. Chem. Eng. J., 2016, 289:349-355.
[27] XIN G, ZHAO P, ZHENG C. Theoretical study of different speciation of mercury adsorption on CaO (001) surface[J]. Proceedings of the Combustion Institute, 2009, 32(2):2693-2699.
[28] KIM B G, LI X, BLOWERS P. Adsorption energies of mercury-containing species on CaO and temperature effects on equilibrium constants predicted by density functional theory calculations[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2009, 25(5):2781.
[29] SASMAZ E, WILCOX J. Mercury species and SO2 adsorption on CaO (100)[J]. J. Phys. Chem. C, 2008, 112(42):16484-16490.
[30] LING L, HAN P, WANG B, et al. Theoretical prediction of simultaneous removal efficiency of ZnO for H2S and Hg0 in coal gas[J]. Chem. Eng. J., 2013, 231:388-396.
[31] SUN S, ZHANG D, LI C, et al. Density functional theory study of mercury adsorption and oxidation on CuO(111) surface[J]. Applied Surface Science, 2014, 258:128-135.
[32] LIU J, HE M, ZHENG C, et al. Density functional theory study of mercury adsorption on V2O5 (001) surface with implications for oxidation[J]. Proceedings of the Combustion Institute, 2011, 33(2):2771-2777.
[33] LING L, ZHAO Z, ZHAO S, et al. Effects of metals doping on the removal of Hg and H2S over ceria[J]. Applied Surface Science, 2017, 403:500-508.
[34] 郑智展, 邱坤赞, 杜学森, 等. 汞在Mn掺杂的CeO2表面吸附现象的实验和理论研究[J]. 能源工程, 2013(4):43-48. ZHENG Z Z, QIU K Z, DU X S, et al. An experimental and theoretical study on mercury adsorption on Mn doped CeO2surface[J]. Energy Engineering, 2013(4):43-48.
[35] 孟帅琦, 周劲松, 王小龙, 等. Hg在Pd掺杂的CeO2表面吸附和脱除[J]. 应用化学, 2016, 33(8):960-967. MENG S Q, ZHOU J S, WANG X L, et al. Adsorption and removal of Hg on Pd doped CeO2[J]. Surfaces Chinese Journal of Applied Chemistry, 2016, 33(8):960-967.
[36] LIU J, QU W, ZHENG C. Theoretical studies of mercury-bromine species adsorption mechanism on carbonaceous surface[J]. Proceedings of the Combustion Institute, 2012, 34(2):2811-2819.
[37] MONTOYA A, TRUONG T N, SAROFIM A F. Application of density functional theory to the study of the reaction of NO with char-bound nitrogen during combustion[J]. The Journal of Physical Chemistry A, 2000, 104(36):8409-8417.
[38] SUN X, HWANG J Y, XIE S. Density functional study of elemental mercury adsorption on surfactants[J]. Fuel, 2011, 90(3):1061-1068.
[39] PADAK B, BRUNETTI M, LEWIS A, et al. Mercury binding on activated carbon[J]. Environmental Progress, 2009, 47(12):2855-2864.
[40] RUNGNIM C, PROMARAK V, HANNONGBUA S, et al. Complete reaction mechanisms of mercury oxidation on halogenated activated carbon[J]. Journal of Hazardous Materials, 2016, 310:253-260.
[41] JUNGSUTTIWONG S, WONGNONGWA Y, NAMUANGRUK S, et al. Density functional theory study of elemental mercury adsorption on boron doped graphene surface decorated by transition metals[J]. Applied Surface Science, 2016, 362:140-145.
[42] FAN L, LING L, WANG B, et al. The adsorption of mercury species and catalytic oxidation of Hg0 on the metal-loaded activated carbon[J]. Applied Catalysis A:General, 2016, 520:13-23.
[43] MEEPRASERT J, JUNKAEW A, RUNGNIM C, et al. Capability of defective graphene-supported Pd13 and Ag13 particles for mercury adsorption[J]. Applied Surface Science, 2015, 364:166-175.
[44] LIU J, QU W, SANG W J, et al. Effect of SO2 on mercury binding on carbonaceous surfaces[J]. Chem. Eng. J., 2012, 184(2):163-167.
[45] ZHANG B, LIU J, ZHANG J, et al. Mercury oxidation mechanism on Pd(100) surface from first-principles calculations[J]. Chemical Engineering Journal, 2014, 237:344-351.
[46] LING L, ZHAO S, HAN P, et al. Toward predicting the mercury removal by chlorine on the ZnO surface[J]. Chem. Eng. J., 2014, 244(1):364-371.
[47] TAO L, GUO X, ZHENG C. Density functional study of Hg adsorption mechanisms on α-Fe2O3 with H2S[J]. Proceedings of the Combustion Institute, 2013, 34(2):2803-2810.
[48] LIU T, XUE L, XIN G, et al. DFT and experimental study on the mechanism of elemental mercury capture in the presence of HCl on α-Fe2O3 (001)[J]. Environmental Science & Technology, 2016, 50(9).
[49] NIKSA S, FUJIWARA N. A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas[J]. Journal of the Air & Waste Management Association, 2005, 55(12):1866-1875.
[50] SUAREZ NEGREIRA A, WILCOX J. DFT study of Hg oxidation across vanadia-titania SCR catalyst under flue gas conditions[J]. The Journal of Physical Chemistry C, 2013, 117(4):1761-1772. |