[1] Pruden A, Pei R, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado[J]. Environmental Science and Technology, 2006, 40(23):7445-7450. [2] 罗玉, 黄斌, 金玉, 等. 污水中抗生素的处理方法研究进展[J]. 化工进展, 2014, 33(9):2471-2477. [3] Gao P, Ding Y J, Li H, et al. Occurrence of pharmaceuticals in a municipal wastewater treatment plant:Mass balance and removal processes[J]. Chemosphere, 2012, 88(1):17-24. [4] Gao P, Munir M, Xagoraraki I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant[J]. Science of the Total Environment, 2012, 421:173-183. [5] Food and Drug Administration. FDA annual report on antimicrobials sold or distributed for food-producing animals in 2011[R]. Rockville, MD:The US Food and Drug Administration, 2011. [6] Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate an effects of veterinary antibiotics(VAs) in the environment[J]. Chemosphere, 2006, 65(5):725-759. [7] Hu J Y, Shi J C, Chang H, et al. Phenotyping and genotyping of antibiotic-resistant Escherichia coli isolated from a natural river basin[J]. Environmental Toxicology and Chemistry, 2008, 42(9):3415-3420. [8] 安清聪, 张曦, 陈克嶙. 动物组织中四环素类抗生素残留的ELISA检测研究——土霉素抗体的制备[J]. 畜牧与兽医, 2004, 36(9):8-10. [9] Migliore L, Brambilla G, Casoria P. Effects of sulphadimethoxine on barley in laboratory terrestrial models[J]. Agriculture Ecosystems and Environment, 1996, 60:121-128. [10] De Liguoro M, Cibin V, Capolongo F, et al. Use of oxytetracycline and tylosin in intensive calf farming:Evaluation of transfer to manure and soil[J]. Chemosphere, 2003, 52(1):203-212. [11] 陈建发, 林诚, 刘福权, 等. 臭氧预处理+絮凝沉淀+BAF组合工艺在二级生化处理出水深度处理的应用[J]. 化工进展, 2014, 33(6):1601-1606. [12] Kim S, Jensen J N, Aga D S, et al. Tetracycline as a selector for resistant bacteria in activated sludge[J]. Chemosphere, 2007, 66(9):1643-1651. [13] Batt A L, Bruce I B, Aga D S. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges[J]. Environmental Pollution, 2006, 142(2):295-302. [14] 那广水, 陈彤, 张月梅, 等. 中国北方地区水体中四环素族抗生素残留现状分析[J]. 中国环境监测, 2009, 25(6):78-80. [15] 邵一如, 席北斗, 曹金玲, 等. 抗生素在城市污水处理系统中的分布及去除[J]. 环境科学与技术, 2013, 36(7):85-92. [16] 周启星, 罗义, 王美娥. 抗生素的环境残留, 生态毒性及抗性基因污染[J]. 生态毒理学报, 2007, 2(3):243-251. [17] 高品, 王宇晖, 刘振鸿, 等. 水中抗生素药物的迁移分布特征研究进展[J]. 环境科学与技术, 2013, 36(7):58-63. [18] 李伟明, 鲍艳宇, 周启星. 四环素类抗生素降解途径及其主要降解产物研究进展[J]. 应用生态学报, 2012, 23(8):2300-2308. [19] Matos M, Pereira M A, Parpot P, et al. Influence of tetracycline on the microbial community composition and activity of nitrifying biofilms[J]. Chemosphere, 2014, 117:295-302. [20] Dan A, Yang Y, Dai Y N, et al. Removal of antibiotics from sewage plant effluent by a natural biological aerated filter and the influencing factors[J]. Ecological Science, 2012, 31(3):289-294. [21] Gulkowska A, Leung H W, So M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China[J]. Water Research, 2008, 42(1):395-403. [22] Drillia P, Dokianakis S N, Fountoulakis M S, et al. On the occasional biodegradation of pharmaceuticals in the activated sludge process:The example of the antibiotic sulfamethoxazole[J]. Journal of Hazardous Materials, 2005, 122(3):259-265. [23] Zhou P, Su C Y, Li B W, et al. Treatment of high-strength pharmaceutical wastewater and removal of antibiotics in anaerobic and aerobic biological treatment processes[J]. Journal of Environmental Engineering, 2006, 132(1):129-136. [24] Batt A L, Kim S, Aga D S. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations[J]. Chemosphere, 2007, 68:428-435. [25] Huang M H, Zhang W, Liu C, et al. Fate of trace tetracycline with resistant bacteria and resistance genes in an improved AAO wastewater treatment plant[J]. Process Safety and Environmental Protection, 2015, 93:68-74. [26] Prado N, Ochoa J, Amrane A. Biodegradation by activated sludge and toxicity of tetracycline into a semi-industrial membrane bioreactor[J]. Bioresource Technology, 2009, 100(15):3769-3774. [27] 刘秀艳, 高永, 张魁. 四环素生产废水处理技术探索及工程实践[J]. 河北建筑工程学院学报, 2005, 23(1):24-26. [28] 刘建广, 黄霞. 二相厌氧-生物接触氧化工艺处理四环素废水的研究[J]. 中国抗生素杂志, 1993, 18(6):451-455. [29] Shi Y J, Wang X H, Qi Z, et al. Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules[J]. Journal of Hazardous Materials, 2011, 191(1):103-109. [30] Tran N H, Urase T, Kusakabe O. The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds[J]. Journal of Hazardous Materials, 2009, 171(1):1051-1057. [31] Katipoglu-Yazan T, Pala-Ozkok I, Ubay-Cokgor E, et al. Acute impact of erythromycin and tetracycline on the kinetics of nitrification and organic carbon removal in mixed microbial culture[J]. Bioresource Technology, 2013, 144:410-419. [32] Kim S, Eichhorn P, Jensen J N, et al. Removal of antibiotics in wastewater:Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process[J]. Environmental Science and Technology, 2005, 39(15):5816-5823. [33] 贾仁勇, 夏四清, 张善发. 两种MBR工艺处理含抗生素污水效果及反应器内微生物群落结构[J]. 净水技术, 2011, 30(5):28-33. [34] Castiglioni S, Bagnati R, Fanelli R, et al. Removal of pharmaceuticals in sewage treatment plants in Italy[J]. Environmental Science and Technology, 2006, 40(1):357-363. [35] Rivera-Utrilla J, Gómez-Pacheco C V, Sánchez-Polo M, et al. Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents[J]. Journal of Environmental Management, 2013, 131:16-24. [36] Ocampo-Pérez R, Rivera-Utrilla J, Gómez-Pacheco C, et al. Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase[J]. Chemical Engineering Journal, 2012, 213:88-96. [37] Novo A, André S, Viana P, et al. Antibiotic resistance, antimicrobial residues and bacterial community composition in urban wastewater[J]. Water Research, 2013, 47(5):1875-1887. [38] Brown M G, Mitchell E H, Balkwill D L. Tet 42, a novel tetracycline resistance determinant isolated from deep terrestrial subsurface bacteria[J]. Antimicrobial Agents and Chemotherapy, 2008, 52(12):4518-4521. [39] 杨颖. 北江水环境中抗生素抗性基因污染分析[D]. 广州:中山大学, 2010. [40] McKinney C W, Loftin K A, Meyer M T, et al. Tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence[J]. Environmental Science and Technology, 2010, 44(16):6102-6109. [41] Reinthaler F F, Posch J, Feierl G, et al. Antibiotic resistance of E. coli in sewage and sludge[J]. Water Research, 2003, 37(8):1685-1690. [42] Munir M, Wong K, Xagoraraki I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan[J]. Water Research, 2011, 45(2):681-693. [43] Auerbach E A, Seyfried E E, McMahon K D. Tetracycline resistance genes in activated sludge wastewater treatment plants[J]. Water Research, 2007, 41(5):1143-1151. [44] Zhang X X, Zhang T. Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across China and other global locations[J]. Environmental Science and Technology, 2011, 45(7):2598-2604. [45] Rysz M, Mansfield W R, Fortner J D, et al. Tetracycline resistance gene maintenance under varying bacterial growth rate, substrate and oxygen availability, and tetracycline concentration[J]. Environmental Science and Technology, 2013, 47(13):6995-7001. [46] Borjesson S, Mattsson A, Lindgren P. Genes encoding tetracycline resistance in a full-scale municipal wastewater treatment plant investigated during one year[J]. Journal of Water and Health, 2010, 8(2):247-256. [47] Zhang Y, Marrs C F, Simon C, et al. Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp[J]. Science of the Total Environment, 2009, 407(12):3702-3706. [48] Da Silva M F, Tiago I, Veríssimo A, et al. Antibiotic resistance of enterococci and related bacteria in an urban wastewater treatment plant[J]. FEMS Microbiology Ecology, 2006, 55(2):322-329. [49] Baquero F, Negri M C, Morosini M I, et al. Antibiotic-selective environments[J]. Clinical Infectious Diseases, 1998, 27(1):5-11. [50] Zhang Y J, Boyd S A, Teppen B J, et al. Role of tetracycline speciation in the bioavailability to Escherichia coli for uptake and expression of antibiotic resistance[J]. Environmental Science and Technology, 2014, 48:4893-4900. [51] Toprak E, Veres A, Michel J B, et al. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection[J]. Nature Genetics, 2012, 44(1):101-105. [52] Yang F X, Mao D Q, Luo Y, et al. Horizontal transfer of antibiotic resistance genes in the environment[J]. Chinese Journal of Applied Ecology, 2013, 24(10):2993-3002. [53] Tremblay C L, Letellier A, Quessy S, et al. Antibiotic-resistant Enterococcus faecalis in abattoir pigs and plasmid colocalization and cotransfer of tet(M) and erm(B) genes[J]. Journal of Food Protection, 2012, 75(9):1595-1602. |