Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S2): 241-255.DOI: 10.16085/j.issn.1000-6613.2021-0951
• Materials science and technology • Previous Articles Next Articles
CHEN Qi(), WANG Wentao, ZHANG Zhipeng, YAN Taihong()
Received:
2021-05-06
Revised:
2021-06-11
Online:
2021-11-12
Published:
2021-11-12
Contact:
YAN Taihong
通讯作者:
晏太红
作者简介:
陈琦(1995—),女,博士研究生,研究方向为核燃料循环与材料。E-mail:基金资助:
CLC Number:
CHEN Qi, WANG Wentao, ZHANG Zhipeng, YAN Taihong. Progress of covalent framework for radionuclides absorption[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 241-255.
陈琦, 王文涛, 张志鹏, 晏太红. 共价有机框架材料对放射性核素吸附的研究进展[J]. 化工进展, 2021, 40(S2): 241-255.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0951
1 | SUN Y B, WU Z Y, WANG X X, et al. Macroscopic and microscopic investigation of U(Ⅵ) and Eu(Ⅲ) adsorption on carbonaceous nanofibers[J]. Environmental Science & Technology, 2016, 50: 4459-4467. |
2 | LV S W, LIU J M, WANG Z H, et al. Recent advances on porous organic frameworks for the adsorptive removal of hazardous materials[J]. Journal of Environmental Sciences, 2019, 80:169-185. |
3 | LI J, WU Z, DUAN Q Y, et al. Simultaneous removal of U(Ⅵ) and Re(Ⅶ) by highly efficient functionalized ZIF-8 nanosheets adsorbent[J]. Journal of Hazardous Materials, 2020, 393: 122398. |
4 | IMAM E A, EL-SAYED I E, MAHFOUZ M G, et al. Synthesis of α-aminophosphonate functionalized chitosan sorbents: effect of methyl vs phenyl group on uranium sorption[J]. Chemical Engineering Journal, 2018, 352: 1022-1034. |
5 | XIE Y, CHEN C, REN X, et al. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation[J]. Progress in Materials Science, 2019, 103:180-234. |
6 | ZOU Y, WANG X, WU F, et al. Controllable synthesis of Ca-Mg-Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(Ⅵ) from wastewater Solutions[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 1173-1185. |
7 | WU Y, PANG H, LIU Y, et al. Environmental remediation of heavy metal ions by novel-nanomaterials: a review.[J]. Environmental Pollution, 2019, 246: 608-620. |
8 | MARTIN W J, GLASS R I, BALBUS J M, et al. A major environmental cause of death[J]. Science, 2011, 334: 180-181. |
9 | SONG S, HUANG S, ZHANG R, et al. Simultaneous removal of U(Ⅵ) and humic acid on defective TiO2-x investigated by batch and spectroscopy techniques[J]. Chemical Engineering Journal, 2017, 325: 576-587. |
10 | TAN W, GUO X, ZHANG S, et al. Synthesis of nitrogen-rich covalent organic framework and its adsorption property for volatile iodine [J]. Scientia Sinica Chimica, 2019, 49(1): 207-214. |
11 | WEN T, WANG J, YU S, et al. Magnetic porous carbonaceous material produced from tea waste for efficient removal of As(Ⅴ), Cr(Ⅵ), humic acid, and dyes[J]. ACS Sustainable Chemistry & Engineering, 2017, 5: 4371-4380. |
12 | NA L, DU J, DI W, et al. Recent advances in facile synthesis and applications of covalent organic framework materials as superior adsorbents in sample pretreatment[J]. TrAC Trends in Analytical Chemistry, 2018, 108:154-166. |
13 | ZHU R, DING J, JIN L, et al. Interpenetrated structures appeared in supramolecular cages, MOFs, COFs[J]. Coordination Chemistry Reviews, 2019, 389:119-140. |
14 | LYLE S J, WALLER P J, YAGHI O M. Covalent organic frameworks: organic chemistry extended into two and three dimensions[J]. Trend Chem, 2019, 1:172-184. |
15 | 李路路, 刘帅, 章琴, 等.共价有机框架材料研究进展[J].物理化学学报, 2017, 33(10): 1960-1977. |
LI L, LIU S, ZHANG Q, et al. Advance in colvalent organic frameworks[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 1960-1977. | |
16 | GENG K, ARUMUGAM V, XU H, et al. Covalent organic frameworks: polymer chemistry and functional design[J]. Progress in Polymer Science, 2020, 108:101288. |
17 | ZHANG C, LI X, CHEN Z, et al. Synthesis of ordered mesoporous carbonaceous materials and their highly efficient capture of uranium from solutions[J]. Science China Chemistry, 2018, 61(3):281-293. |
18 | LI J, CHEN C, ZHANG S, et al. Surface functional groups and defects on carbon nanotubes affect adsorption-desorption hysteresis of metal cations and oxoanions in water[J]. Environmental Science: Nano, 2014, 1(5):488-495. |
19 | SHENG G, YANG S, SHENG J, et al. Maroscopic and microscopic investigation of Ni(Ⅱ) sequeatration on diatomite by batch, XPS, and EXAFS techniques[J]. Environmental Science & Technology, 2011, 45(18): 7718-7726. |
20 | MEUNIER N, DROGUI P, MONTANE C, et al. Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate[J]. Journal of Hazardous Materials, 2006, 137(1): 581-590. |
21 | ROMAN-ROSS G, CUELLO G J, TURRILLAS X, et al. Arsenite sorption and co-precipitation with calcite[J]. Chemical Geology, 2006. 233(3-4): 328-336. |
22 | GAUVIN D A, SOFFEL R W, FREEMAN W P, et al. Achieving low mercury concentrations in Chlor-Alkali wastewaters[J]. Environmental Progress, 2003, 22(3):167-173. |
23 | BOUHAMED F, ELOUEAR Z, BOUZID J. Adsorptive removal of copper(II) from aqueous solutions on activated carbon prepared from Tunisian date stones: equilibrium, kinetics and thermodynamic[J]. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43(5): 741-749. |
24 | CHEN Q, LU C, HU Y F, et al. Extraction behavior of several lanthanides from nitric acid with DMDODGA in [C4 mim][NTf2 ] ionic liquid[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 327: 565-573. |
25 | 刘耀阳, 刘志斌, 赵闯, 等. 锕系元素分离研究:不对称双酰胺荚醚的萃取化学及应用[J]. 化学进展, 2020, 32(S1): 219-229. |
LIU Y Y, LIU Z B, ZHAO C, et al. Separation of actinides: extraction chemistry and application of unsymmetric diglycolamides [J]. Progress in Chemistry. 2020, 32(S1): 219-229. | |
26 | HOCH L B, MACK E J, HYDUTSKY B W, et al. Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent vhromium[J]. Environment Science Technology, 2008, 42(7): 2600-2605. |
27 | DING C, CHENG W, SUN Y, et al. Effects of Bacillus subtilis on the reduction of U(Ⅵ) by nano-Fe0[J]. Geochimica et Cosmochimica Acta, 2015, 165: 86-107. |
28 | LI J, CHEN C, ZHANG R, et al. Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions[J]. Chemistry-an Asian Journal, 2015, 10(6):1410-1417. |
29 | SUN Y, DING C, CHENG W, et al. Simultaneous adsorption and reduction of U(Ⅵ) on reduced graphene oxide-supported nanoscale zerovalent iron[J]. Journal of Hazardous Materials, 2014, 280:399-408. |
30 | GAO J, SUN S, ZHU W, et al. Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal[J]. Water Research, 2014, 63:252-261. |
31 | MANOS M J, KANATZIDIS M G. Layered metal sulfides capture uranium from seawater[J]. Journal of the American Chemical Society, 2012, 134(39): 16441-16446. |
32 | YANG S, HU J, CHEN C, et al. Mutual effects of Pb(Ⅱ) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions[J]. Environmental Science & Technology, 2011, 45(8):3621-3627. |
33 | LI J, CHEN C, ZHANG R, et al. Reductive immobilization of Re(Ⅶ) by graphene modified nanoscale zero-valent iron particles using a plasma technique[J]. Science China Chemistry, 2016, 59:150-158. |
34 | YANG S, SHENG G, TAN X, et al. Determination of Ni(Ⅱ) uptake mechanisms on mordenite surfaces: a combined macroscopic and microscopic approach[J]. Geochimica et Cosmochimica Acta, 2011, 75(21):6520-6534. |
35 | SUN Y, ZHANG R, DING C, et al. Adsorption of U(Ⅵ) on sericite in the presence of Bacillus subtilis: a combined batch, EXAFS and modeling techniques[J]. Geochimica Et Cosmochimica Acta, 2016, 180:51-65. |
36 | CHEN C, YANG X, WEI J, et al. Eu(Ⅲ) uptake on rectorite in the presence of humic acid: a macroscopic and spectroscopic study[J]. Journal of Colloid & Interface Science, 2013, 393: 249-256. |
37 | TAN X, FAN Q, WANG X, et al. Eu(Ⅲ) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS studies[J]. Environmental Science & Technology, 2009, 43(9): 3115-3121. |
38 | YANG S, SHENG G, MONTAVON G, et al. Investigation of Eu(Ⅲ) immobilization on γ-Al2O3 surfaces by combining batch technique and EXAFS analyses: role of contact time and humic acid[J]. Geochimica Et Cosmochimica Acta, 2013, 121: 84-104. |
39 | LI J, FAN Q, WU Y, et al. Magnetic polydopamine decorated with Mg-Al LDH nanoflakes as a novel bio-based adsorbent for simultaneous removal of potentially toxic metals and anionic dyes[J]. Journal of Materials Chemistry A, 2016, 4(5): 1737-1746. |
40 | WEN T, WU X, TAN X, et al. One-pot synthesis of water-swellable Mg-Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As(Ⅴ) from aqueous solutions[J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3304-3311. |
41 | WU X, TAN X, YANG S, et al. Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides[J]. Water Research, 2013, 47(12): 4159-4168. |
42 | SARAFRAZ H, MINUCHEHR A, ALAHYARIZADEH G, et al. Synthesis of enhanced phosphonic functional groups mesoporous silica for uranium selective adsorption from aqueous solutions[J]. Scientific Reports, 2017, 7(1): 11675. |
43 | SELLIN P, LEUPIN O X. The use of clay as an engineered barrier in radioactive-waste management-a review[J]. Clays and Clay Minerals, 2013, 61(5): 477-498. |
44 | LI W, LIU J, ZHAO D. Mesoporous materials for energy conversion and storage devices[J]. Nature Reviews Materials, 2016, 1(6): 16023. |
45 | REN X, LI J, TAN X, et al. Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination[J]. Dalton Transactions, 2013, 42: 5266-5274. |
46 | HADI P, TO M, HUI C, et al. Aqueous mercury adsorption by activated carbons[J]. Water Research, 2015, 73: 37-55. |
47 | TIAN G, GENG J X, JIN Y D, et al. Sorption of uranium(Ⅵ) using oximegrafted ordered mesoporous carbon CMK-5[J]. Journal of Hazard Materials, 2011, 190(1/2/3): 442-50. |
48 | WANG X, FAN Q, YU S, et al. RETRACTED: High sorption of U(Ⅵ) on graphene oxides studied by batch experimental and theoretical calculations[J]. Chemical Engineering Journal, 2016, 287: 448-455. |
49 | ZHAO G, LI J, REN X, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J]. Environmental Science & Technology, 2011, 45(24): 10454-10462. |
50 | LINGAMDINNE L, KODURU J, KARRI R. A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification[J]. Journal of Environmental Management, 2019, 231: 622-634. |
51 | KODURU J R, KARRI R R, MUBARAK N M. Smart materials, magnetic graphene oxide-based nanocomposites for sustainable water purification[M]. In: INAMUDDIN Thomas S, KUMAR Mishra R, Asiri A M, Eds. Sustainable Polymer Composites and Nanocomposites. Cham: Springer, 2019: 759-781 |
52 | MAUTER M S, ELIMELECH M. Environmental applications of carbon-based nanomaterials[J]. Environmental Science & Technology, 2008, 42(16): 5843. |
53 | 刘大前,刘峥嵘,蔡之望. 功能树脂吸附分离锕系元素的研究进展[J]. 铀矿冶, 2017, 36(3):182-187. |
LIU D Q, LIU Z R, CAI Z W, et al. Research progress of functional resin adsorption and separation of actinides[J]. Uranium Mining and Metallurgy, 2017, 36(3): 182-187. | |
54 | WU D, XU F, SUN B, et al. Design and preparation of porous polymers[J]. Chemical Reviews, 2012, 112(7): 3959-4015. |
55 | XU S, LUO Y, TAN B. Recent development of hypercrosslinked microporous organic polymers[J]. Macromolecular Rapid Communications, 2013, 34(6): 471-484. |
56 | MCKEOWN N B, BUDD P M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage[J]. Chemical Society Reviews, 2006, 35(8): 675-683. |
57 | XU Y, JIN S, XU H, et al. Conjugated microporous polymers: design, synthesis and application[J]. ChemInform, 2013, 44(20): 8012-8031. |
58 | BEN T, REN H, MA S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angewandte Chemie International Edition, 2009, 48(50): 9457-9460. |
59 | XIAO C, SILVER M A, WANG S. Metal-organic frameworks for radionuclide sequestration from aqueous solution: a brief overview and outlook[J]. Dalton Transactions, 2017, 46(47): 16381-16386. |
60 | TENG B, REN H, MA S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angewandte Chemie International Edition, 2009, 48(50): 9457-9460. |
61 | ZHU L, SHENG D, CHAO X, et al. Identifying the recognition site for selective trapping of 99TcO4- in a hydrolytically stable and radiation resistant cationic metal-organic framework[J]. Journal of the American Chemical Society, 2017, 139(42): 14873-14876. |
62 | ZHANG J, ZHOU L, JIA Z, et al. Construction of covalent organic framework with unique double-ring pore for size-matching adsorption of uranium[J]. Nanoscale, 2020, 12(47): 24044-24053. |
63 | YU J P, YUAN L Y, WANG S, et al. Phosphonate-decorated covalent organic frameworks for actinide extraction: a breakthrough under highly acidic conditions[J].CCS Chemistry, 2019, 1(3): 286-295. |
64 | CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
65 | DOONAN C J, TRANCHEMONTAGNE D J, GLOVER T G, et al. Exceptional ammonia uptake by a covalent organic framework[J]. Nature Chemistry, 2010, 2(3): 235-238. |
66 | MODAK A, JANA S. Advancement in porous adsorbents for post-combustion CO2 capture[J]. Microporous and Mesoporous Materials, 2019, 276: 107-132. |
67 | KLONTZA E, TYLIANAKIS E, FROUDAKIS G E. Designing 3D COFs with enhanced hydrogen storage capacity[J]. Nano Letters, 2010, 10(2): 452-454. |
68 | XIA L, WANG F, LIU Q. Effects of substituents on the H2 storage properties of COF-320[J]. Materials Letter, 2016, 162: 9-12. |
69 | YANG Y, FAHEEM M, WANG L, et al. Surface pore engineering of covalent organic frameworks for ammonia capture through synergistic multivariate and open metal site approaches[J]. ACS Central Science, 2018, 4: 748-754. |
70 | KUMAR R, SINGH L, ZULARISAM. Mesoporous Co3O4 nanoflasks as an efficient and non-precious cathode catalyst for oxygen reduction reaction in air-cathode microbial fuel cells[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 329-336. |
71 | YANG D H, YAO Z Q, WU D, et al. Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(47): 18621-18627. |
72 | WANG S, WANG Q, SHAO P, et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries[J]. Journal of the American Chemical Society, 2017, 139(12): 4258-4261. |
73 | ZHANG X, LI G, WU D, et al. Recent advances in the construction of functionalized covalent organic frameworks and their applications to sensing[J]. Biosen. Bioelectron., 2019, 145(12): 111699-111699. |
74 | DING S, DONG M, WANG Y, et al. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(Ⅱ)[J]. Journal of the American Chemical Society, 2016, 138(9): 3031-3031. |
75 | CHEN L, FURUKAWA K, GAO J, et al. Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions[J]. Journal of the American Chemical Society, 2014, 136(28) 9806-9809. |
76 | DING X, GUO J, FENG X, et al. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity[J]. Angewandte Chemie International Edition, 2011, 50: 1289-1293. |
77 | ZHENG W, TSANG C S, LEE L Y S, et al. Two-dimensional metal-organic framework and covalent-organic framework: synthesis and their energy-related applications[J]. Materials Today Chemistry, 2019, 12: 34-60. |
78 | ZHANG Y, RIDUAN S N, WANG J. Redox active metal- and covalent organic frameworks for energy storage: balancing porosity and electrical conductivity[J]. Chemistry-A European Journal, 2017, 23:16419-16431. |
79 | EL-Mahdy A F M, Hung Y H, Mansoure T H, et al. Synthesis of [3+3] β-ketoenamine-tethered covalent organic frameworks (COFs) for high-performance supercapacitance and CO2 storage[J]. Journal of the Taiwan Institute Chemical Engineers, 2019, 103:199-208. |
80 | ZHANG N, ISHAG A, LI Y, et al. Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: a review[J]. Journal of Cleaner Production, 2020, 277: 123360. |
81 | LI J, YANG X, BAI C, et al. A novel benzimidazole-functionalized 2-D COF material: synthesis and application as a selective solid-phase extractant for separation of uranium[J]. Journal of Colloid and Interface Science, 2015, 437: 211-218. |
82 | YIN Z J, XU S Q, ZHAN T G, et al. Ultrahigh volatile iodine uptake by hollow microspheres formed from a heteropore covalent organic framework[J]. Chemical Communications, 2017, 53: 7266-7269. |
83 | WEN R, YANG L, ZHANG M, et al. Graphene-synergized 2D covalent organic framework for adsorption: a mutual promotion strategy to achieve stabilization and functionalization simultaneously[J]. Journal of Hazardous Materials, 2018, 358: 273-285. |
84 | LI Y, GUO X, LI X, et al. Redox-active two-dimensional covalent organic frameworks (COFs) for selective reductive separation of valence-variable, redox-sensitive and long‐lived radionuclides[J]. Angewandte Chemie International Edition, 2020, 132: 4197-4204. |
85 | HE L, LIU S, CHEN L, et al. Mechanism unravelling for ultrafast and selective 99TcO4- uptake by a radiation-resistant cationic covalent organic framework: a combined radiological experiment and molecular dynamics simulation study[J]. Chemical Science, 2019, 10(15): 4293-4305. |
86 | SCHNUG E, LOTTERMOSER B G. Fertilizer-derived uranium and its threat to human health[J]. Environmental Science & Technology, 2013, 47(6): 2433-2434. |
87 | HU Y Z, WANG X X, ZOU Y D, et al. Superior sorption capacities of Ca-Ti and Ca-Al bimetallic oxides for U(Ⅵ) from aqueous solutions[J]. Chemical Engineering Journal, 2017, 316: 419-428. |
88 | SUN Q, AGUILA B, EARL L D, et al. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration[J]. Advanced Materials, 2018, 30(20): 1705479. |
89 | XIONG X H, YU Z W, GONG L L, et al. Ammoniating covalent organic framework (COF) for high-performance and selective extraction of toxic and radioactive uranium ions[J]. Advanced Science, 2019, 6(16): 1900547-1900655. |
90 | LI Z D, ZHANG H Q, XIONG X H, et al. U(Ⅵ) adsorption onto covalent organic frameworks-TpPa-1[J]. Journal of Solid State Chemistry, 2019, 277: 484-492. |
91 | ZHONG X, LU Z, LIANG W, et al. The fabrication of 3D hierarchical flower-like δ-MnO2@COF nanocomposites for the efficient and ultrafast removal of UO22+ ions from aqueous solution[J]. Environmental Science: Nano, 2020, 7: 3303-3317. |
92 | YOU Z, ZHANG N, GUAN Q, et al. High sorption capacity of U(Ⅵ) by COF-based material doping hydroxyapatite microspheres: kinetic, equilibrium and mechanism investigation[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30: 1966-1979. |
93 | LI F F, CUI W R, JIANG W, et al. Stable sp2 carbon-conjugated covalent organic framework for detection and efficient adsorption of uranium from radioactive wastewater[J]. Journal of Hazardous Materials, 2020, 392: 122333. |
94 | ZHANG C R, CUI W R, JIANG W, et al. Simultaneous sensitive detection and rapid adsorption of UO22+ based on a post-modified sp2 carbon-conjugated covalent organic framework[J]. Environmental Science: Nano, 2020, 7: 842-850. |
95 | CUI W R, ZHANG C R, JIANG W, et al. Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium[J]. Nature Communications, 2020, 11(1): 436. |
96 | ZHANG S, ZHAO X, LI B, et al. "Stereoscopic" 2D super-microporous phosphazene-based covalent organic framework: design, synthesis and selective sorption towards uranium at high acidic condition[J]. Journal of Hazardous Materials, 2016, 314: 95-104. |
97 | BAI C, LI J, LIU S, et al. In situ preparation of nitrogen-rich and functional ultramicroporous carbonaceous COFs by "segregated" microwave irradiation[J]. Microporous & Mesoporous Materials, 2014, 197: 148-155. |
98 | BAI C, ZHANG M, LI B, et al. Modifiable diyne-based covalent organic framework: a versatile platform for in situ multipurpose functionalization[J]. RSC Advances, 2016, 6(45): 39150-39158. |
99 | LI X, QI Y, YUE G, et al. Solvent- and catalyst-free synthesis of an azine-linked covalent organic framework and the induced tautomerization in the adsorption of U(Ⅵ) and Hg(Ⅱ)[J]. Green Chemistry, 2019, 21(3): 649-657. |
100 | ZHONG X, LIANG W, LU Z, et al. Highly efficient enrichment mechanism of U(Ⅵ) and Eu(Ⅲ) by covalent organic frameworks with intramolecular hydrogen-bonding from solutions[J]. Applied Surface Science, 2019, 504: 144403. |
101 | GECKEIS H, LÜTZENKIRCHEN J, POLLY R, et al. Mineral-water interface reactions of actinides[J]. Chemical Reviews, 2013, 113(2): 1016-1062. |
102 | SUN Y, LU S, WANG X, et al. Plasma-facilitated synthesis of amidoxime/carbon nanofiber hybrids for effective enrichment of 238U(Ⅵ) and 241Am(Ⅲ)[J]. Environmental Science & Technology, 2017, 51(21): 12274-12282. |
103 | SUN Q, AGUILA B, EARL L D, et al. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration[J]. Advanced Materials, 2018, 30(20): 1705479. |
104 | KELLEY S P, BARBER P S, MULLINS P H K, et al. Structural clues to UO22+/VO2+ competition in seawater extraction using amidoxime-based extractants[J]. Chemical Communications, 2014, 50(83): 12504-12507. |
105 | WANG P, XU Q, LI Z, et al. Exceptional iodine capture in 2D covalent organic frameworks[J]. Advanced Materials, 2018, 30(29): 1801991.1-1801991.7. |
106 | YAN Z J, YUAN Y, TIAN Y Y, et al. Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites[J]. Angewandte Chemie International Edition, 2015, 54: 12733-12737. |
107 | SUN Y H, SONG S A, XIAO D H, et al. Easily constructed imine-bonded COFs for iodine capture at ambient temperature[J]. ACS Omega, 2020, 5(38): 24262-24271. |
108 | LI L, CHEN R, LI Y, et al. Novel cotton fiber-covalent organic framework hybrid monolith for reversible capture of iodine[J]. Cellulose, 2020, 27: 5879-5892. |
109 | PAN X, QIN X, ZHANG Q, et al. N- and S-rich covalent organic framework for highly efficient removal of indigo carmine and reversible iodine capture[J]. Microporous and Mesoporous Materials, 2020, 296:109990. |
110 | GUO X, TIAN Y, ZHANG M, et al. Mechanistic insight into hydrogen-bond-controlled crystallinity and adsorption property of covalent organic frameworks from flexible building blocks[J]. Chemistry of Materials, 2018, 30(7): 2299-2308. |
111 | GUO X, LI Y, ZHANG M, et al. Colyliform crystalline 2D covalent organic frameworks (COFs) with quasi-3D topologies for rapid I2 adsorption[J]. Angewandte Chemie International Edition, 2020, 59(50): 22697-22705. |
112 | LI J, ZHANG H, ZHANG L, et al. Two-dimensional covalent-organic frameworks for ultrahigh iodine capture[J]. Journal of Materials Chemistry A, 2020, 8: 9523-9527. |
113 | AN S, ZHU X, HE Y, et al. Porosity modulation in two-dimensional covalent organic frameworks leads to enhanced iodine adsorption performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(24): 10495-10502. |
114 | WANG C, WANG Y, GE R, et al.A 3D covalent organic framework with exceptionally high iodine capture capability[J]. Chemistry—A European Journal, 2018, 24(3): 585-589. |
115 | LI Y, LI Y, ZHAO Q, et al. Cotton fiber functionalized with 2D covalent organic frameworks for iodine capture[J]. Cellulose, 2020, 27(3):1517-1529. |
116 | LAN Y S, TONG M M, YANG Q Y, et al. Computational screening of covalent organic frameworks for the capture of radioactive iodine and methyl iodide[J]. Crystengcomm, 2017(33): 4920-4926. |
117 | XIONG S H, TANG X, PAN C Y, et al. Carbazole-bearing porous organic polymers with a mulberry-like morphology for efficient iodine capture[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27335-27342. |
118 | DEMARTIN F, DEPLANO P, DEVILLANOVA F A, et al. Conductivity, FT-Raman spectra and X-ray crystal structures of two novel [D2I]In (n=3 and D=N-methylbenzothiazole-2(3H)-selone; n=7 and D=N-methylbenzothiazole-2(3H)-thione) iodonium salts. first example of I-.3I2 heptaiodide[J]. Inorganic Chemistry, 1993, 32(17): 3694-3699. |
119 | DIEL B, INABE T, LYING J, et al. Cofacial assembly of partially oxidized metallamacrocycles as an approach to controlling lattice architecture in low-dimensional molecular solids. chemical, structural, oxidation state, transport, magnetic, and optical properties of halogen-doped [M(phthalocyaninato)O]n macromolecules, where M=Si, Ge, and Sn[J]. Journal of the American Chemical Society, 1983, 14(39): 1551-1567. |
120 | HASSEL O, HOPE H, SÖRENSEN N A, et al. Structure of the solid compound formed by addition of two molecules of iodine to one molecule of pyridine[J]. Acta Chemica Scandinavica, 1961, 15: 407-416. |
121 | LEE M S, UM W, WANG G, et al. Impeding 99Tc(IV) mobility in novel waste forms[J]. Nature Communications, 2016, 7:12067. |
122 | WILDUNG R E, MCFADDEN K M, GARLAND T R. Technetium sources and behavior in the environment[J]. Journal of Environmental Quality, 1979, 8: 156-161. |
123 | ALBERTO R, BERGAMASCHI G, BRABAND H, et al. 99TcO4-: selective recognition and trapping in aqueous solution[J]. Angewandte Chemie International Edition, 2012, 51(39): 9772-9776. |
124 | GU B, DOWLEN K E. An investigation of groundwater organics, soil minerals, and activated carbon on the complexation, adsorption, and separation of technetium-99[J]. Office of Scientific & Technical Information Technical Reports, 1996. |
125 | MOLLICK S, FAJAL S, et al. Nanotrap grafted anion exchangeable hybrid materials for efficient removal of toxic oxoanions from water[J]. ACS Central Science, 2020, 6(9): 1534-1541. |
126 | WANG Y, XIE M, LAN J, et al. Radiation controllable synthesis of robust covalent organic framework conjugates for efficient dynamic column extraction of 99TcO4[J]. Chem, 2020, 6(10): 2796-2809. |
127 | DA H J, YANG C X, YAN X P.Cationic covalent organic nanosheets for rapid and selective capture of perrhenate: an analogue of radioactive pertechnetate from aqueous solution[J]. Environmental Science & Technology, 2019, 53(9): 5212-5220. |
128 | LU Q, MA Y, LI H, et al. Frontispiz: postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions[J]. Angewandte Chemie, 2018, 57(21): 6042-6048. |
[1] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[2] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[3] | ZHANG Tingting, ZUO Xuqian, TIAN Lingdi, WANG Shimeng. Construction method of volatile organic compounds emission inventory and factor database in chemical industry park [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 549-557. |
[4] | LI Jitong, WANG Gang, XIONG Yaxuan, XU Qian. Energy and exergy analysis of single-effect absorption refrigeration system with different refrigerants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 104-112. |
[5] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[6] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[7] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[8] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[9] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[10] | WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. |
[11] | FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. |
[12] | SANG Wei, TANG Jianfeng, HUA Yihuai, CHEN Jie, SUN Peiyuan, XU Yifei. Effects of physical solvent and amine properties on the performance of biphasic solvent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2151-2159. |
[13] | WANG Qiuhua, WU Jiashuai, ZHANG Weifeng. Research progress of alkaline industrial solid wastes mineralization for carbon dioxide sequestration [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1572-1582. |
[14] | YE Hao, HU Ping, WANG Ce, LIU Yong. Advances in research on magnetic fibrous electromagnetic wave absorbers [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5310-5321. |
[15] | QI Yabing, JIA Honglei. Progress on separation and purification for organic compounds by melt crystallization [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 373-385. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |