Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (8): 4497-4507.DOI: 10.16085/j.issn.1000-6613.2020-1841
• Resources and environmental engineering • Previous Articles Next Articles
ZHANG Weifeng(), XU Yuanlong, WANG Qiuhua()
Received:
2020-09-14
Online:
2021-08-12
Published:
2021-08-05
Contact:
WANG Qiuhua
通讯作者:
王秋华
作者简介:
张卫风(1977—),男,博士,副教授,研究方向为大气污染及其控制、温室气体CO2减排。E-mail:CLC Number:
ZHANG Weifeng, XU Yuanlong, WANG Qiuhua. Progress of research on regeneration of rich alkanolamine solution with low energy consumption[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4497-4507.
张卫风, 许元龙, 王秋华. CO2醇胺富液低能耗再生研究进展[J]. 化工进展, 2021, 40(8): 4497-4507.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1841
1 | LYU D, CHEN J Y, YANG K X, et al. Ultrahigh CO2/CH4 and CO2/N2 adsorption selectivities on a cost-effectively L-aspartic acid based metal-organic framework[J]. Chemical Engineering Journal, 2019, 375: 122074. |
2 | SERRA-CRESPO P, BERGER R, YANG W P, et al. Separation of CO2/CH4 mixtures over NH2-MIL-53—An experimental and modelling study[J]. Chemical Engineering Science, 2015, 124: 96-108. |
3 | HU Z G, NALAPARAJU A, PENG Y W, et al. Modulated hydrothermal synthesis of UiO-66(Hf)-type metal-organic frameworks for optimal carbon dioxide separation[J]. Inorganic Chemistry, 2016, 55(3): 1134-1141. |
4 | SONG C F, LI R, FAN Z C, et al. CO2/N2 separation performance of Pebax/MIL-101 and Pebax /NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation[J]. Separation and Purification Technology, 2020, 238: 116500. |
5 | 张卫风, 马伟春, 邱雪霏. 醇胺吸收液的浸润性对膜吸收法脱除CO2性能的影响[J]. 化工进展, 2017, 36(12): 4686-4691. |
ZHANG Weifeng, MA Weichun, QIU Xuefei. Effect of infiltration of organic amine absorbents on CO2 removal performance with membrane gas absorption method[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4686-4691. | |
6 | 张卫风, 李娟, 王秋华, 等. 燃煤烟气中CO2膜吸收分离技术的膜浸润特性述评[J]. 化工进展, 2019, 38(8): 3866-3873. |
ZHANG Weifeng, LI Juan, WANG Qiuhua, et al. Review on membrane wettability of membrane CO2 absorption method from coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3866-3873. | |
7 | SHI H C, FU J X, WU Q M, et al. Studies of the coordination effect of DEA-MEA blended amines (within 1+4 to 2+3M) under heterogeneous catalysis by means of absorption and desorption parameters[J]. Separation and Purification Technology, 2020, 236: 116179. |
8 | AFKHAMIPOUR M, MOFARAHI M, REZAEI A, et al. Experimental and theoretical investigation of equilibrium absorption performance of CO2 using a mixed 1-dimethylamino-2-propanol (1DMA2P) and monoethanolamine (MEA) solution[J]. Fuel, 2019, 256: 115877. |
9 | NAKHJIRI A T, HEYDARINASAB A, BAKHTIARI O, et al. The effect of membrane pores wettability on CO2 removal from CO2/CH4 gaseous mixture using NaOH, MEA and TEA liquid absorbents in hollow fiber membrane contactor[J]. Chinese Journal of Chemical Engineering, 2018, 26(9): 1845-1861. |
10 | 林海周, 裴爱国, 方梦祥. 燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展[J]. 化工进展, 2018, 37(12): 4874-4886. |
LIN Haizhou, PEI Aiguo, FANG Mengxiang. Progress of research on process modifications for amine solvent-based post combustion CO2 capture from coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4874-4886. | |
11 | MANZOLINI G, SANCHEZ FERNANDEZ E, REZVANI S, et al. Economic assessment of novel amine based CO2 capture technologies integrated in power plants based on European Benchmarking Task Force methodology[J]. Applied Energy, 2015, 138: 546-558. |
12 | LITTEL R J, VERSTEEG G F, SWAAIJ W P M VAN. Kinetics of CO2 with primary and secondary amines in aqueous solutions—I. Zwitterion deprotonation kinetics for DEA and DIPA in aqueous blends of alkanolamines[J]. Chemical Engineering Science, 1992, 47(8): 2027-2035. |
13 | VAIDYA P D, KENIG E Y. CO2-alkanolamine reaction kinetics: a review of recent studies[J]. Chemical Engineering & Technology, 2007, 30(11): 1467-1474. |
14 | XIAO M, LIU H L, GAO H X, et al. CO2 absorption with aqueous tertiary amine solutions: equilibrium solubility and thermodynamic modeling[J]. The Journal of Chemical Thermodynamics, 2018, 122: 170-182. |
15 | SINGTO S, SUPAP T, IDEM R, et al. Synthesis of new amines for enhanced carbon dioxide (CO2) capture performance: the effect of chemical structure on equilibrium solubility, cyclic capacity, kinetics of absorption and regeneration, and heats of absorption and regeneration[J]. Separation and Purification Technology, 2016, 167: 97-107. |
16 | KANG M K, JEON S B, CHO J H, et al. Characterization and comparison of the CO2 absorption performance into aqueous, quasi-aqueous and non-aqueous MEA solutions[J]. International Journal of Greenhouse Gas Control, 2017, 63: 281-288. |
17 | GUO H, LI C X, SHI X Q, et al. Nonaqueous amine-based absorbents for energy efficient CO2 capture[J]. Applied Energy, 2019, 239: 725-734. |
18 | KANG S J, SHEN X Z, YANG W Z. Investigation of CO2 desorption kinetics in MDEA and MDEA+DEA rich amine solutions with thermo-gravimetric analysis method[J]. International Journal of Greenhouse Gas Control, 2020, 95: 102947. |
19 | DE ÁVILA S G, LOGLI M A, MATOS J R. Kinetic study of the thermal decomposition of monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA) and methyldiethanolamine (MDEA)[J]. International Journal of Greenhouse Gas Control, 2015, 42: 666-671. |
20 | WAI S K, NWAOHA C, SAIWAN C, et al. Absorption heat, solubility, absorption and desorption rates, cyclic capacity, heat duty, and absorption kinetic modeling of AMP-DETA blend for post-combustion CO2 capture[J]. Separation and Purification Technology, 2018, 194: 89-95. |
21 | LIU B, LUO X, GAO H X, et al. Reaction kinetics of the absorption of carbon dioxide (CO2) in aqueous solutions of sterically hindered secondary alkanolamines using the stopped-flow technique[J]. Chemical Engineering Science, 2017, 170: 16-25. |
22 | MURAI S, KATO Y, MAEZAWA Y, et al. Novel hindered amine absorbent for CO2 capture[J]. Energy Procedia, 2013, 37: 417-422. |
23 | NARKU-TETTEH J, MUCHAN P L, SAIWAN C, et al. Effect of side chain structure and number of hydroxyl groups of primary, secondary and tertiary amines on their post-combustion CO2 capture performance[J]. Energy Procedia, 2017, 114: 1811-1827. |
24 | DERKS P W J, KLEINGELD T, AKEN C VAN, et al. Kinetics of absorption of carbon dioxide in aqueous piperazine solutions[J]. Chemical Engineering Science, 2006, 61(20): 6837-6854. |
25 | KHAN A A, HALDER G, SAHA A K. Experimental investigation on efficient carbon dioxide capture using piperazine (PZ) activated aqueous methyldiethanolamine (MDEA) solution in a packed column[J]. International Journal of Greenhouse Gas Control, 2017, 64: 163-173. |
26 | MUCHAN P L, NARKU-TETTEH J, SAIWAN C, et al. Effect of number of amine groups in aqueous polyamine solution on carbon dioxide (CO2) capture activities[J]. Separation and Purification Technology, 2017, 184: 128-134. |
27 | SHARIF M, ZHANG T T, WU X M, et al. Evaluation of CO2 absorption performance by molecular dynamic simulation for mixed secondary and tertiary amines[J]. International Journal of Greenhouse Gas Control, 2020, 97: 103059. |
28 | XU G W, ZHANG C F, QIN S J, et al. Kinetics study on absorption of carbon dioxide into solutions of activated methyldiethanolamine[J]. Industrial & Engineering Chemistry Research, 1992, 31(3): 921-927. |
29 | ZHANG X, ZHANG C F, QIN S J, et al. A kinetics study on the absorption of carbon dioxide into a mixed aqueous solution of methyldiethanolamine and piperazine[J]. Industrial & Engineering Chemistry Research, 2001, 40(17): 3785-3791. |
30 | ZHANG T T, YU Y S, ZHANG Z X. An interactive chemical enhancement of CO2 capture in the MEA/PZ/AMP/DEA binary solutions[J]. International Journal of Greenhouse Gas Control, 2018, 74: 119-129. |
31 | SHI H C, NAAMI A, IDEM R, et al. Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents[J]. International Journal of Greenhouse Gas Control, 2014, 26: 39-50. |
32 | SHI H C, IDEM R, NAAMI A, et al. Catalytic solvent regeneration using hot water during amine based CO2 capture process[J]. Energy Procedia, 2014, 63: 266-272. |
33 | NAKAI H, NISHIMURA Y, KAIHO T, et al. Contrasting mechanisms for CO2 absorption and regeneration processes in aqueous amine solutions: insights from density-functional tight-binding molecular dynamics simulations[J]. Chemical Physics Letters, 2016, 647: 127-131. |
34 | SALEH BAIRQ Z ALI, GAO H X, HUANG Y F, et al. Enhancing CO2 desorption performance in rich MEA solution by addition of SO42-/ZrO2/SiO2 bifunctional catalyst[J]. Applied Energy, 2019, 252: 113440. |
35 | NWAOHA C, IDEM R, SUPAP T, et al. Heat duty, heat of absorption, sensible heat and heat of vaporization of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blend for carbon dioxide (CO2) capture[J]. Chemical Engineering Science, 2017, 170: 26-35. |
36 | ROCHELLE G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654. |
37 | YUAN Y, ROCHELLE G T. CO2 absorption rate and capacity of semi-aqueous piperazine for CO2 capture[J]. International Journal of Greenhouse Gas Control, 2019, 85: 182-186. |
38 | BOUGIE F, POKRAS D, FAN X F. Novel non-aqueous MEA solutions for CO2 capture[J]. International Journal of Greenhouse Gas Control, 2019, 86: 34-42. |
39 | WANDERLEY R R, PINTO D D D, KNUUTILA H K. Investigating opportunities for water-lean solvents in CO2 capture: VLE and heat of absorption in water-lean solvents containing MEA[J]. Separation and Purification Technology, 2020, 231: 115883. |
40 | BARZAGLI F, MANI F, PERUZZINI M. Efficient CO2 absorption and low temperature desorption with non-aqueous solvents based on 2-amino-2-methyl-1-propanol (AMP)[J]. International Journal of Greenhouse Gas Control, 2013, 16: 217-223. |
41 | CHEN S M, CHEN S Y, ZHANG Y C, et al. Species distribution of CO2 absorption/desorption in aqueous and non-aqueous N-ethylmonoethanolamine solutions[J]. International Journal of Greenhouse Gas Control, 2016, 47: 151-158. |
42 | LIU F, JING G H, ZHOU X B, et al. Performance and mechanisms of triethylene tetramine (TETA) and 2-amino-2-methyl-1-propanol (AMP) in aqueous and nonaqueous solutions for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 1352-1361. |
43 | LAI Q H, KONG L L, GONG W B, et al. Low-energy-consumption and environmentally friendly CO2 capture via blending alcohols into amine solution[J]. Applied Energy, 2019, 254: 113696. |
44 | AKACHUKU A, OSEI P A, DECARDI-NELSON B, et al. Experimental and kinetic study of the catalytic desorption of CO2 from CO2-loaded monoethanolamine (MEA) and blended monoethanolamine- methyl-diethanolamine (MEA-MDEA) solutions[J]. Energy, 2019, 179: 475-489. |
45 | BHATTI U H, SHAH A K, HUSSAIN A, et al. Catalytic activity of facilely synthesized mesoporous HZSM-5 catalysts for optimizing the CO2 desorption rate from CO2-rich amine solutions[J]. Chemical Engineering Journal, 2020, 389: 123439. |
46 | ZHANG X W, ZHANG X, LIU H L, et al. Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts[J]. Applied Energy, 2017, 202: 673-684. |
47 | ZHANG X W, LIU H L, LIANG Z W, et al. Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts[J]. Applied Energy, 2018, 229: 562-576. |
48 | ZHANG X W, HUANG Y F, GAO H X, et al. Zeolite catalyst-aided tri-solvent blend amine regeneration: an alternative pathway to reduce the energy consumption in amine-based CO2 capture process[J]. Applied Energy, 2019, 240: 827-841. |
49 | ZHANG X W, ZHANG R, LIU H L, et al. Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts[J]. Applied Energy, 2018, 218: 417-429. |
50 | GAO H X, HUANG Y F, ZHANG X W, et al. Catalytic performance and mechanism of SO42-/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution[J]. Applied Energy, 2020, 259: 114179. |
51 | 李强. 纳米流体强化传热机理研究[D]. 南京: 南京理工大学, 2004. |
LI Qiang. Investigation on enhanced heat transfer of nanofluids[D]. Nanjing: Nanjing University of Science and Technology, 2004. | |
52 | LEE J W, TORRES PINEDA I, LEE J H, et al. Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents[J]. Applied Energy, 2016, 178: 164-176. |
53 | PANG C W, JUNG J Y, LEE J W, et al. Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 5597-5602. |
54 | LEE J S, LEE J W, KANG Y T. CO2 absorption/regeneration enhancement in DI water with suspended nanoparticles for energy conversion application[J]. Applied Energy, 2015, 143: 119-129. |
55 | WANG T, YU W, LIU F, et al. Enhanced CO2 absorption and desorption by monoethanolamine (MEA)-based nanoparticle suspensions[J]. Industrial & Engineering Chemistry Research, 2016, 55(28): 7830-7838. |
56 | HAFIZI A, RAJABZADEH M, KHALIFEH R. Enhanced CO2 absorption and desorption efficiency using DETA functionalized nanomagnetite/water nano-fluid[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103845. |
57 | MURNANDARI A, KANG J M, YOUN M H, et al. Effect of process parameters on the CaCO3 production in the single process for carbon capture and mineralization[J]. Korean Journal of Chemical Engineering, 2017, 34(3): 935-941. |
58 | LUO C, WU K J, YUE H R, et al. DBU-based CO2 absorption-mineralization system: reaction process, feasibility and process intensification[J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1145-1155. |
60 | PARK S, JO H, KANG D, et al. A study of CO2 precipitation method considering an ionic CO2 and Ca(OH)2 slurry[J]. Energy, 2014, 75: 624-629. |
61 | 张卫风, 李娟, 王秋华. 响应面法优化解吸MDEA/PG富液中CO2再生工艺[J/OL]. 过程工程学报: 1-10[2021-02-19]. . |
ZHANG Weifeng, LI Juan, WANG Qiuhua. Response surface methodology for optimizing CO2 regeneration in MDEA/PG rich solutions[J/OL]. The Chinese Journal of Process Engineering: 1-10[2021-02-19]. . | |
62 | YU B, LI K K, JI L, et al. Coupling a sterically hindered amine-based absorption and coal fly ash triggered amine regeneration: a high energy-saving process for CO2 absorption and sequestration[J]. International Journal of Greenhouse Gas Control, 2019, 87: 58-65. |
63 | CHANG R, CHOI D, KIM M H, et al. Tuning crystal polymorphisms and structural investigation of precipitated calcium carbonates for CO2 mineralization[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1659-1667. |
64 | ARTI M, YOUN M H, PARK K T, et al. Single process for CO2 capture and mineralization in various alkanolamines using calcium chloride[J]. Energy & Fuels, 2017, 31(1): 763-769. |
65 | KANG J M, MURNANDARI A, YOUN M H, et al. Energy-efficient chemical regeneration of AMP using calcium hydroxide for operating carbon dioxide capture process[J]. Chemical Engineering Journal, 2018, 335: 338-344. |
66 | LYU B, GUO B S, ZHOU Z M, et al. Mechanisms of CO2 capture into monoethanolamine solution with different CO2 loading during the absorption/desorption processes[J]. Environmental Science & Technology, 2015, 49(17): 10728-10735. |
67 | 马伟春, 张卫风, 焦月潭, 等. 钙法解吸并固定乙醇胺富液中CO2[J]. 环境科学学报, 2018, 38(1): 109-114. |
MA Weichun, ZHANG Weifeng, JIAO Yuetan, et al. Desorption and mineralization of CO2 in monoethanolamine-rich solution by calcium method[J]. Acta Scientiae Circumstantiae, 2018, 38(1): 109-114. | |
68 | ARTI M, YOUN M H, PARK K T, et al. Single process for CO2 capture and mineralization in various alkanolamines using calcium chloride[J]. Energy & Fuels, 2017, 31(1): 763-769. |
69 | PARK S, MIN J, LEE M G, et al. Characteristics of CO2 fixation by chemical conversion to carbonate salts[J]. Chemical Engineering Journal, 2013, 231: 287-293. |
70 | 张卫风, 李娟, 王秋华. Ca(OH)2解吸并固定混合吸收液中CO2的实验研究[J]. 环境科学学报, 2020, 40(4): 1436-1442. |
ZHANG Weifeng, LI Juan, WANG Qiuhua. Experimental study on desorption and mineralization of CO2 in amine-rich solution[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1436-1442. | |
71 | LIU M S, GADIKOTA G. Single-step, low temperature and integrated CO2 capture and conversion using sodium glycinate to produce calcium carbonate[J]. Fuel, 2020, 275: 117887. |
72 | HONG S J, SIM G, MOON S, et al. Low-temperature regeneration of amines integrated with production of structure-controlled calcium carbonates for combined CO2 capture and utilization[J]. Energy & Fuels, 2020, 34(3): 3532-3539. |
73 | LIU M S, GADIKOTA G. Integrated CO2 capture, conversion, and storage to produce calcium carbonate using an amine looping strategy[J]. Energy & Fuels, 2019, 33(3): 1722-1733. |
74 | JI L, YU H, LI K K, et al. Integrated absorption-mineralisation for low-energy CO2 capture and sequestration[J]. Applied Energy, 2018, 225: 356-366. |
75 | LIU Meishen, ASGAR Hassnain, SEIFERT Soenke, et al. Novel aqueous amine looping approach for the direct capture, conversion and storage of CO2 to produce magnesium carbonate[J]. Sustainable Energy & Fuels, 2020, 4(3): 1265-1275. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[3] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[4] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[5] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[6] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[7] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[8] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[9] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[10] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[11] | LYU Chao, ZHANG Xiwen, JIN Lijian, YANG Linjun. Efficient capture of CO2 by a new biphasic solvent-ionic liquid system [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3226-3232. |
[12] | WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. |
[13] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[14] | HE Zhiyong, GUO Tianfo, WANG Jinli, LYU Feng. Progress of CO2/epoxide copolymerization catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1847-1859. |
[15] | FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |