Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (8): 4508-4514.DOI: 10.16085/j.issn.1000-6613.2020-1917
• Resources and environmental engineering • Previous Articles Next Articles
ZHAO Ning1(), FENG Yongxin1, LIN Tingkun1, XIE Zhiwen2
Received:
2020-09-21
Online:
2021-08-12
Published:
2021-08-05
Contact:
ZHAO Ning
通讯作者:
赵宁
作者简介:
赵宁(1986—),男,高级工程师,研究方向为电力环保。E-mail:基金资助:
CLC Number:
ZHAO Ning, FENG Yongxin, LIN Tingkun, XIE Zhiwen. Research progresses on evaporation characteristics of desulfurization wastewater droplets in high-temperature flue gas[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4508-4514.
赵宁, 冯永新, 林廷坤, 谢志文. 热烟气环境下脱硫废水液滴蒸发特性研究进展[J]. 化工进展, 2021, 40(8): 4508-4514.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1917
1 | PAKZADEH B, WOS J, RENEW J. Flue gas desulfurization wastewater treatment for coal-fired power industry[C]//Proceedings of ASME 2014 Power Conference, 2014, Baltimore, Maryland, USA. 2014 |
2 | 马双忱, 于伟静, 贾绍广, 等. 燃煤电厂脱硫废水处理技术研究与应用进展[J]. 化工进展, 2016, 35(1): 255-262. |
MA Shuangchen, YU Weijing, JIA Shaoguang, et al. Research and application progresses of flue gas desulfurization(FGD) wastewater treatment technologies in coal-fired plants[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 255-262. | |
3 | 白璐, 陈武, 王凯亮, 等. 燃煤电厂脱硫废水零排放处理技术研究进展[J]. 工业水处理, 2019, 39(4): 16-20. |
BAI Lu, CHEN Wu, WANG Kailiang, et al. Research progress in the zero-discharge treatment technology for desulfurization wastewater from coal-fired power plants[J]. Industrial Water Treatment, 2019, 39(4): 16-20. | |
4 | 车广民. 脱硫废水旋转喷雾蒸发及其氯元素迁移转化特性实验研究[D]. 南京:东南大学, 2020. |
CHE Guangmin. Experimental study on spray evaporation of desulphurization wastewater and transfer and transformation characteristics of Chlorine element[D]. Nanjing: Southeast University, 2020. | |
5 | MA S C, CHAI J, CHEN G D, et al. Research on desulfurization wastewater evaporation: Present and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1143-1151. |
6 | LU H J, WANG J K, WANG T, et al. Crystallization techniques in wastewater treatment: an overview of applications[J]. Chemosphere, 2017, 173: 474-484. |
7 | COMBE N A, DONALDSON D J. Water evaporation from acoustically levitated aqueous solution droplets[J]. The Journal of Physical Chemistry A, 2017, 121(38): 7197-7204. |
8 | HANDSCOMB C S, KRAFT M, BAYLY A E. A new model for the drying of droplets containing suspended solids[J]. Chemical Engineering Science, 2009, 64(4): 628-637. |
9 | ITO M, HONJO S, USHIKU T. MHI’s simple zero liquid discharge system for wet FGD[C]//Power Plant Air Pollutant Control “MEGA” Symposium. 2012: 20-23. |
10 | MEZHERICHER M, LEVY A, BORDE I. Theoretical models of single droplet drying kinetics: a review[J]. Drying Technology, 2010, 28(2): 278-293. |
11 | MA S C, CHAI J, WU K, et al. Experimental research on bypass evaporation tower technology for zero liquid discharge of desulfurization wastewater[J]. Environmental Technology, 2019, 40(20): 2715-2725. |
12 | 崔琳, 沈鲁光, 杨敦峰, 等. 中温烟气蒸发脱硫废水干燥过程及产物特性分析[J]. 煤炭学报, 2017, 42(7): 1877-1883. |
CUI Lin, SHEN Luguang, YANG Dunfeng, et al. Drying properties and product characteristics of desulfurization wastewater evaporation by medium-temperature flue gas[J]. Journal of China Coal Society, 2017, 42(7): 1877-1883. | |
13 | ZHENG C H, ZHENG H, YANG Z D, et al. Experimental study on the evaporation and chlorine migration of desulfurization wastewater in flue gas[J]. Environmental Science and Pollution Research, 2019, 26(5): 4791-4800. |
14 | UKAI N, NAGAYASU T, KAMIYAMA N, et al. Spray-drying device for dehydrated filtrate from desulfurization wastewater, air pollution control system and flue gas treatment method: US9555341[P]. 2017-01-31. |
15 | TENG X J, STRANGE R, EASOM B. A pilot demonstration of spray dryer evaporation as a method to treat power plant FGD Wastewater[C]. //Annual International Water Conference, 2014. |
16 | 白炎武, 刘平元, 陆启亮, 等. 脱硫废水烟道蒸发技术蒸发特性实验研究[J]. 动力工程学报, 2019, 39(2): 135-141. |
BAI Yanwu, LIU Pingyuan, LU Qiliang, et al. Experimental research on evaporation characteristics of desulfurization wastewater by flue evaporation treatment[J]. Journal of Chinese Society of Power Engineering, 2019, 39(2): 135-141. | |
17 | DENG J J, PAN L M, CHEN D Q, et al. Numerical simulation and field test study of desulfurization wastewater evaporation treatment through flue gas[J]. Water Science and Technology, 2014, 70(7): 1285-1291. |
18 | 康梅强, 邓佳佳, 陈德奇, 等. 脱硫废水烟道蒸发零排放处理的可行性分析[J]. 土木建筑与环境工程, 2013, 35(S1): 238-240. |
KANG Meiqiang, DENG Jiajia, CHEN Deqi, et al. Analysis on the feasibility of desulfurization wastewater evaporation treatment in flue gas duct without pollution discharge[J]. Journal of Civil,Architectural & Environmental Engineering, 2013, 35(S1): 238-240. | |
19 | 冉景煜, 张志荣. 不同物性液滴在低温烟气中的蒸发特性数值研究[J]. 中国电机工程学报, 2010, 30(26): 62-68. |
RAN Jingyu, ZHANG Zhirong. Numerical study on evaporation characteristics of different substance droplet in low temperature flue gas[J]. Proceedings of the CSEE, 2010, 30(26): 62-68. | |
20 | YE X L, ZHANG C C, WANG S, et al. Simulation of desulphurization wastewater evaporation through flue gas[J]. Powder Technology, 2020, 361: 462-472. |
21 | 左蓓萌, 杨仲卿, 张力, 等. 脱硫废水液滴与飞灰颗粒碰撞特性数值研究[J]. 工程热物理学报, 2018, 39(12): 2714-2720. |
ZUO Beimeng, YANG Zhongqing, ZHANG Li, et al. Numerical simulation of collision characteristics between desulfurization wastewater droplets and fly ash particles[J]. Journal of Engineering Thermophysics, 2018, 39(12): 2714-2720. | |
22 | LANGRISH T A G, KOCKEL T K. The assessment of a characteristic drying curve for milk powder for use in computational fluid dynamics modelling[J]. Chemical Engineering Journal, 2001, 84(1): 69-74. |
23 | CHEN X D, XIE G Z. Fingerprints of the drying behaviour of particulate or thin layer food materials established using a reaction engineering model[J]. Food and Bioproducts Processing, 1997, 75(4): 213-222. |
24 | GOPIREDDY S R, GUTHEIL E. Numerical simulation of evaporation and drying of a bi-component droplet[J]. International Journal of Heat and Mass Transfer, 2013, 66: 404-411. |
25 | GRADINGER T B, BOULOUCHOS K. A zero-dimensional model for spray droplet vaporization at high pressures and temperatures[J]. International Journal of Heat and Mass Transfer, 1998, 41(19): 2947-2959. |
26 | CHEN X D. The basics of a reaction engineering approach to modeling air-drying of small droplets or thin-layer materials[J]. Drying Technology, 2008, 26(6): 627-639. |
27 | CHEN X D, LIN S X Q. Air drying of milk droplet under constant and time-dependent conditions[J]. AIChE Journal, 2005, 51(6): 1790-1799. |
28 | ZAITONE B AL, AL-ZAHRANI A, AL-SHAHRANI S, et al. Drying of a single droplet of dextrin: Drying kinetics modeling and particle formation[J]. International Journal of Pharmaceutics, 2020, 574: 118888. |
29 | ZHANG C, FU N, QUEK S Y, et al. Exploring the drying behaviors of microencapsulated noni juice using reaction engineering approach (REA) mathematical modelling[J]. Journal of Food Engineering, 2019, 248: 53-61. |
30 | RAMKRISHNA Doraiswami. Population balances: theory and applications to particulate systems engineering[M]. New York: Academic Press, 2000. |
31 | FU N, WOO M W, CHEN X D. Single droplet drying technique to study drying kinetics measurement and particle functionality: a review[J]. Drying Technology, 2012, 30(15): 1771-1785. |
32 | FU N, WAI WOO M, QI LIN S X, et al. Reaction Engineering Approach (REA) to model the drying kinetics of droplets with different initial sizes—experiments and analyses[J]. Chemical Engineering Science, 2011, 66(8): 1738-1747. |
33 | SADAFI M H, JAHN I, STILGOE A B, et al. Theoretical and experimental studies on a solid containing water droplet[J]. International Journal of Heat and Mass Transfer, 2014, 78: 25-33. |
34 | SADAFI M H, JAHN I, STILGOE A B, et al. A theoretical model with experimental verification for heat and mass transfer of saline water droplets[J]. International Journal of Heat and Mass Transfer, 2015, 81: 1-9. |
35 | MISYURA S Y. Non-isothermal evaporation in a sessile droplet of water-salt solution[J]. International Journal of Thermal Sciences, 2018, 124: 76-84. |
36 | QU J, ESCOBAR L, LI J Z, et al. Experimental study of evaporation and crystallization of brine droplets under different temperatures and humidity levels[J]. International Communications in Heat and Mass Transfer, 2020, 110: 104427. |
37 | LIANG Z X, ZHANG L, YANG Z Q, et al. Evaporation and crystallization of a droplet of desulfurization wastewater from a coal-fired power plant[J]. Applied Thermal Engineering, 2017, 119: 52-62. |
38 | LIANG Z X, ZHANG L, YANG Z Q, et al. Evaporation model for a sessile liquid droplet with variable temperature[J]. International Journal of Thermal Sciences, 2019, 145: 106011. |
39 | LIANG Z X, CHENG X N, ZHANG L, et al. Study of main solutes on evaporation and crystallization processes of the desulfurization wastewater droplet[J]. Energy & Fuels, 2018, 32(5): 6119-6129. |
40 | LIANG Z X, ZHANG L, YANG Z Q, et al. The effect of solid particles on the evaporation and crystallization processes of the desulfurization wastewater droplet[J]. Applied Thermal Engineering, 2018, 134: 141-151. |
41 | LIANG Z X, YAN Y N, YAN J H, et al. The study of evaporation characteristics of the desulfurization wastewater (electrolyte solution) droplet[J]. Applied Thermal Engineering, 2019, 161: 114119. |
42 | WEI Y, DENG W W, CHEN R H. Effects of insoluble nano-particles on nanofluid droplet evaporation[J]. International Journal of Heat and Mass Transfer, 2016, 97: 725-734. |
[1] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
[2] | LI Jiyan, JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi. Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3611-3622. |
[3] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[4] | WANG Baowen, LIU Tongqing, ZHANG Gang, LI Weiguang, LIN Deshun, WANG Mengjia, MA Jingjing. Reaction characteristics of CuFe2O4 modified desulfurization slag oxygen carrier with lignite [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2884-2894. |
[5] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
[6] | XIE Yingchun, MA Hongting, XU Chang, MA Shuo, CHEN Mo, LIU Jun, SUN Guoqiang. Analysis of heat transfer characteristics in vertical tube of seepage falling film evaporative condenser [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1187-1194. |
[7] | ZHANG Qunli, HUANG Haotian, ZHANG Lin, ZHAO Wenqiang, ZHANG Qiuyue. Analysis of condensation waste heat recovery system of spray flue gas source heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 650-657. |
[8] | ZHANG He, LI Xiaoke, XIONG Ying, WEN Jin. Desalination and pollution treatment of fracturing flow-back fluid based on interfacial solar evaporation of hydrogel [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1073-1079. |
[9] | MAO Tingting, LI Shuangfu, HUANG Limingming, ZHOU Chuanling, HAN Kai. Solar interfacial evaporation system and materials for water treatment and organic solvent purification [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 178-193. |
[10] | LI Chao, MIAO Jiabing, WANG Liping, CUI Yongjie, LI Yifan. Extraction of lithium from evaporation mother liquor [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 637-642. |
[11] | LU Shijian, LIU Ling, LIU Ziwu, GUO Bowen, YU Xulin, LIANG Yan, ZHAO Dongya, ZHU Quanmin. Study of CO2 absorption stability of AEP-DPA-CuO phase change nanofluids [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4555-4561. |
[12] | LONG Hongming, DING Long, QIAN Lixin, CHUN Tiejun, ZHANG Hongliang, YU Zhengwei. Current situation and development trend of NO x and dioxins emission reduction in sintering flue gas [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3865-3876. |
[13] | MAO Jijin, ZHANG Donghui, SUN Lili, LEI Qinhui, QU Jian. Boiling heat transfer and resistance characteristics of two types of sintered structures [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3483-3492. |
[14] | WU Chuanpeng, LI Chuankun, YANG Zhe, GOU Chengdong, GAO Xinjiang. Research progress of SO2 removal by solid adsorbents [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3840-3854. |
[15] | LI Yucan, HU Dinghua, LIU Jinhui. Evolution characteristics of transient evaporation rate of Al2O3 nanofluid droplet [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3493-3501. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |