Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (8): 4305-4313.DOI: 10.16085/j.issn.1000-6613.2020-2012
• Materials science and technology • Previous Articles Next Articles
Received:
2020-10-08
Online:
2021-08-12
Published:
2021-08-05
Contact:
DU Kaifeng
通讯作者:
杜开峰
作者简介:
乔亮智(1994—),男,博士研究生,研究方向为多糖色谱介质。E-mail:基金资助:
CLC Number:
QIAO Liangzhi, DU Kaifeng. Fabrication and application of polysaccharide microspheres[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4305-4313.
乔亮智, 杜开峰. 天然多糖微球的制备及功能应用[J]. 化工进展, 2021, 40(8): 4305-4313.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2012
1 | 罗晓刚. 再生纤维素微球的制备、结构和功能[D]. 武汉: 武汉大学, 2010. |
LUO Xiaogang. Preparation, structure and function of regenerated cellulose microspheres[D]. Wuhan: Wuhan University, 2010. | |
2 | DUAN B, HUANG Y, LU A, et al. Recent advances in chitin based materials constructed via physical methods[J]. Progress in Polymer Science, 2018, 82: 1-33. |
3 | 赵红, 徐晓敏, 徐建鸿, 等. 微流控制备壳聚糖功能材料研究进展[J]. 化工学报, 2016, 67(2): 373-378. |
ZHAO Hong, XU Xiaomin, XU Jianhong, et al. Research progress in microfluidic preparation of chitosan functional materials[J]. CIESC Journal, 2016, 67(2): 373-378. | |
4 | 黄兰, 黄永东, 赵岚, 等. 复乳法制备大孔琼脂糖分离介质与疫苗结合性能研究[J]. 化学工业与工程, 2019, 36(4): 70-79. |
HUANG Lan, HUANG Yongdong, ZHAO Lan, et al. Preparation of macroporous agarose-based chromatographic media using a double emulsification method and its binding with HBsAg[J]. Chemical Industry and Engineering, 2019, 36(4): 70-79. | |
5 | KLEMM D, HEUBLEIN B, FINK H P, et al. Cellulose: fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition, 2005, 44(22): 3358-3393. |
6 | CAI J, ZHANG L, CHANG C, et al. Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature[J]. ChemPhysChem, 2007, 8(10): 1572-1579. |
7 | PRASAD K, MONDAL D, SHARMA M, et al. Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents[J]. Carbohydrate Polymers, 2018, 180: 328-336. |
8 | 段博, 涂虎, 张俐娜. 可持续高分子-纤维素新材料研究进展[J]. 高分子学报, 2020, 51(1): 66-86. |
DUAN Bo, TU Hu, ZHANG Lina. Material research progress of the sustainable polymer-cellulose[J]. Acta Polymerica Sinica, 2020, 51(1): 66-86. | |
9 | GERICKE M, TRYGG J, FARDIM P. Functional cellulose beads: preparation, characterization, and applications[J]. Chemical Reviews, 2013, 113(7): 4812-4836. |
10 | WEI X Q, DUAN J J, XU X J, et al. Highly efficient one-step purification of sulfated polysaccharides via chitosan microspheres adsorbents[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3195-3203. |
11 | DUAN B, ZHENG X, XIA Z, et al. Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers[J]. Angewandte Chemie International Edition, 2015, 54(17): 5152-5156. |
12 | KAMAL MOHAMED S M, GANESAN K, MILOW B, et al. The effect of zinc oxide (ZnO) addition on the physical and morphological properties of cellulose aerogel beads[J]. RSC Advances, 2015, 5(109): 90193-90201. |
13 | SESCOUSSE R, GAVILLON R, BUDTOVA T. Wet and dry highly porous cellulose beads from cellulose-NaOH-water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles[J]. Journal of Materials Science, 2011, 46(3): 759-765. |
14 | LI C, HE M, TONG Z, et al. Construction of biocompatible regenerated cellulose/SPI composite beads using high-voltage electrostatic technique[J]. RSC Advances, 2016, 6(58): 52528-52538. |
15 | WORKMAN V L, TEZERA L B, ELKINGTON P T, et al. Controlled generation of microspheres incorporating extracellular matrix fibrils for three-dimensional cell culture[J]. Adv. Funct. Mater., 2014, 24(18): 2648-2657. |
16 | SHANG Y, DING F Y, XIAO L, et al. Chitin-based fast responsive pH sensitive microspheres for controlled drug release[J]. Carbohydrate Polymers, 2014, 102: 413-418. |
17 | DONG Z, XU H, BAI Z S, et al. Microfluidic synthesis of high-performance monodispersed chitosan microparticles for methyl orange adsorption[J]. RSC Advances, 2015, 5(95): 78352-78360. |
18 | WANG B J, ZHU Y, BAI Z S, et al. Functionalized chitosan biosorbents with ultra-high performance, mechanical strength and tunable selectivity for heavy metals in wastewater treatment[J]. Chemical Engineering Journal, 2017, 325: 350-359. |
19 | LUO X G, ZHANG L N. Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications[J]. Journal of Chromatography A, 2010, 1217(38): 5922-5929. |
20 | DENG C, LIU J, ZHOU W, et al. Fabrication of spherical cellulose/carbon tubes hybrid adsorbent anchored with welan gum polysaccharide and its potential in adsorbing methylene blue[J]. Chemical Engineering Journal, 2012, 200/201/202: 452-458. |
21 | DU K F, LIU X H, LI S K, et al. Synthesis of Cu2+ chelated cellulose/magnetic hydroxyapatite particles hybrid beads and their potential for high specific adsorption of histidine-rich proteins[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11578-11586. |
22 | ZHANG Q, DAN S M, DU K F. Fabrication and characterization of magnetic hydroxyapatite entrapped agarose composite beads with high adsorption capacity for heavy metal removal[J]. Industrial & Engineering Chemistry Research, 2017, 56(30): 8705-8712. |
23 | DU K F, YAN M, WANG Q Y, et al. Preparation and characterization of novel macroporous cellulose beads regenerated from ionic liquid for fast chromatography[J]. Journal of Chromatography A, 2010, 1217(8): 1298-1304. |
24 | LI X Q, LI Q, GONG F L, et al. Preparation of large-sized highly uniform agarose beads by novel rotating membrane emulsification[J]. Journal of Membrane Science, 2015, 476: 30-39. |
25 | DU K F, LI S K, ZHAO L S, et al. One-step growth of porous cellulose beads directly on bamboo fibers via oxidation-derived method in aqueous phase and their potential for heavy metal ions adsorption[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 17068-17075. |
26 | QIAO L Z, ZHAO L S, DU K F. Construction of hierarchically porous chitin microspheres via a novel Dual-template strategy for rapid and high-capacity removal of heavy metal ions[J]. Chemical Engineering Journal, 2020, 393: 124818. |
27 | LIU J, YAN M, ZHANG Y K, et al. Study of glutamate-modified cellulose beads for Cr(Ⅲ) adsorption by response surface methodology[J]. Industrial & Engineering Chemistry Research, 2011, 50(18): 10784-10791. |
28 | LIU J, XIE T H, DENG C, et al. Welan gum-modified cellulose bead as an effective adsorbent of heavy metal ions (Pb2+, Cu2+, and Cd2+) in aqueous solution[J]. Separation Science and Technology, 2014, 49(7): 1096-1103. |
29 | NIE L, DUAN B, LU A, et al. Pd/TiO2@carbon microspheres derived from chitin for highly efficient photocatalytic degradation of volatile organic compounds[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1658-1666. |
30 | LIU Z, WANG H S, LI B, et al. Biocompatible magnetic cellulose-chitosan hybrid gel microspheres reconstituted from ionic liquids for enzyme immobilization[J]. Journal of Materials Chemistry, 2012, 22(30): 15085. |
31 | MORONI L, DE WIJN J R, BLITTERSWIJK C A VAN. Integrating novel technologies to fabricate smart scaffolds[J]. Journal of Biomaterials Science Polymer Edition, 2008, 19(5): 543-572. |
32 | HOLLISTER S J. Porous scaffold design for tissue engineering[J]. Nature Materials, 2005, 4(7): 518-524. |
33 | SU X, TAN M, DUAN B, et al. Hierarchical microspheres with macropores fabricated from chitin as 3D cell culture[J]. Journal of Materials Chemistry B, 2019, 7(34): 5190-5198. |
34 | BARKHORDARI S, YADOLLAHI M, NAMAZI H. pH Sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems[J]. Journal of Polymer Research, 2014, 21(6): 454. |
35 | TRYGG J, YILDIR E, KOLAKOVIC R, et al. Anionic cellulose beads for drug encapsulation and release[J]. Cellulose, 2014, 21(3): 1945-1955. |
36 | AGARWAL T, NARAYANA S N G H, PAL K, et al. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery[J]. International Journal of Biological Macromolecules, 2015, 75: 409-417. |
37 | DUAN B, GAO X, YAO X, et al. Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors[J]. Nano Energy, 2016, 27: 482-491. |
38 | LIN T, CHEN I W, LIU F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350(6267): 1508-1513. |
39 | XU D F, CHEN C J, XIE J, et al. Electrode materials: a hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(6): 15019296. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[4] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[5] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[6] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[7] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[10] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[11] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[14] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[15] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |