Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (8): 4290-4304.DOI: 10.16085/j.issn.1000-6613.2020-1887
• Materials science and technology • Previous Articles Next Articles
FENG Dong1,2(), WANG Bo1, QI Fangwei2, HU Tianding1()
Received:
2020-09-17
Online:
2021-08-12
Published:
2021-08-05
Contact:
HU Tianding
通讯作者:
胡天丁
作者简介:
冯东(1990—),男,讲师,研究方向为高分子材料高性能化与多功能化。E-mail:基金资助:
CLC Number:
FENG Dong, WANG Bo, QI Fangwei, HU Tianding. Research progress in the preparation of polymer-based materials for selective laser sintering[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4290-4304.
冯东, 王博, 戚方伟, 胡天丁. 选择性激光烧结用聚合物基材料制备研究进展[J]. 化工进展, 2021, 40(8): 4290-4304.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1887
29 | LI Dong, TANG Kungui, FU Long. 3D printing sand core of cylinder head[J]. Foundry, 2016, 65(4): 325-328. |
30 | SCHWENTENWEIN M, HOMA J. Additive manufacturing of dense alumina ceramics[J]. International Journal of Applied Ceramic Technology, 2015, 12(1): 1-7. |
31 | LIU K, SUN H J, SHI Y S, et al. Research on selective laser sintering of Kaolin-epoxy resin ceramic powders combined with cold isostatic pressing and sintering[J]. Ceramics International, 2016, 42(9): 10711-10718. |
32 | 史玉升, 闫春泽, 魏青松, 等. 选择性激光烧结3D打印用高分子复合材料[J]. 中国科学: 信息科学, 2015, 45(2): 204-211. |
SHI Yusheng, YAN Chunze, WEI Qingsong, et al. Polymer based composites for selective laser sintering 3D printing technology[J]. Scientia Sinica Informationis, 2015, 45(2): 204-211. | |
33 | BASHIR Z, GU H, YANG L T. Evaluation of poly(ethylene terephthalate) powder as a material for selective laser sintering, and characterization of printed part[J]. Polymer Engineering & Science, 2018, 58(10): 1888-1900. |
34 | BERRETTA S, GHITA O, EVANS K E. Morphology of polymeric powders in laser sintering (LS): from polyamide to new PEEK powders[J]. European Polymer Journal, 2014, 59: 218-229. |
35 | WANG G X, WANG P L, ZHEN Z C, et al. Preparation of PA12 microspheres with tunable morphology and size for use in SLS processing[J]. Materials & Design, 2015, 87: 656-662. |
36 | JIN Y P, CHEN N, LI Y J, et al. The selective laser sintering of a polyamide 11/BaTiO3/graphene ternary piezoelectric nanocomposite[J]. RSC Advances, 2020, 10(35): 20405-20413. |
37 | SINGH S, SHARMA V S, SACHDEVA A. Optimization and analysis of shrinkage in selective laser sintered polyamide parts[J]. Materials and Manufacturing Processes, 2012, 27(6): 707-714. |
38 | GUO Y L, JIANG K Y, BOURELL D L. Accuracy and mechanical property analysis of LPA12 parts fabricated by laser sintering[J]. Polymer Testing, 2015, 42: 175-180. |
39 | DICKENS E D, LEE B L, TAYLOR G A, et al. Sinterable semi-crystalline powder and near-fully dense article formed therein: US5648450[P]. 1997-07-15. |
40 | SALMORIA G V, LEITE J L, VIEIRA L F, et al. Mechanical properties of PA6/PA12 blend specimens prepared by selective laser sintering[J]. Polymer Testing, 2012, 31(3): 411-416. |
1 | LEE J Y, AN J, CHUA C K. Fundamentals and applications of 3D printing for novel materials[J]. Applied Materials Today, 2017, 7: 120-133. |
2 | GOODRIDGE R D, TUCK C J, HAGUE R J M. Laser sintering of polyamides and other polymers[J]. Progress in Materials Science, 2012, 57(2): 229-267. |
41 | HOOREWEDER B VAN, MOENS D, BOONEN R, et al. On the difference in material structure and fatigue properties of nylon specimens produced by injection molding and selective laser sintering[J]. Polymer Testing, 2013, 32(5): 972-981. |
42 | CERARDI A, CANERI M, MENEGHELLO R, et al. Mechanical characterization of polyamide cellular structures fabricated using selective laser sintering technologies[J]. Materials & Design, 2013, 46: 910-915. |
43 | YUAN S S, STROBBE D, KRUTH J P, et al. Production of polyamide-12 membranes for microfiltration through selective laser sintering[J]. Journal of Membrane Science, 2017, 525: 157-162. |
3 | MOHAMED O A, MASOOD S H, BHOWMIK J L. Optimization of fused deposition modeling process parameters: a review of current research and future prospects[J]. Advances in Manufacturing, 2015, 3(1): 42-53. |
4 | ZHOU C, CHEN Y, YANG Z G, et al. Digital material fabrication using mask-image-projection-based stereolithography[J]. Rapid Prototyping Journal, 2013, 19(3): 153-165. |
5 | PARANDOUSH P, LIN D. A review on additive manufacturing of polymer-fiber composites[J]. Composite Structures, 2017, 182: 36-53. |
6 | LIND J U, BUSBEE T A, VALENTINE A D, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing[J]. Nature Materials, 2017, 16(3): 303-308. |
44 | LAMMENS N, KERSEMANS M, DE BAERE I, et al. On the visco-elasto-plastic response of additively manufactured polyamide-12 (PA-12) through selective laser sintering[J]. Polymer Testing, 2017, 57: 149-155. |
45 | CAI Chao, LIU Jie, ZHU W, et al. Study on the selective laser sintering of a low-isotacticity polypropylene powder[J]. Rapid Prototyping Journal, 2016, 22(4): 621-629. |
7 | PANESAR A, ASHCROFT I, BRACKETT D, et al. Design framework for multifunctional additive manufacturing: coupled optimization strategy for structures with embedded functional systems[J]. Additive Manufacturing, 2017, 16: 98-106. |
8 | BANDYOPADHYAY A, BOSE S, DAS S. 3D printing of biomaterials[J]. MRS Bulletin, 2015, 40(2): 108-115. |
46 | PEYRE P, ROUCHAUSSE Y, DEFAUCHY D, et al. Experimental and numerical analysis of the selective laser sintering (SLS) of PA12 and PEKK semi-crystalline polymers[J]. Journal of Materials Processing Technology, 2015, 225: 326-336. |
47 | BERRETTA S, EVANS K E, GHITA O. Processability of PEEK, a new polymer for high temperature laser sintering (HT-LS)[J]. European Polymer Journal, 2015, 68: 243-266. |
9 | ZAREK M, LAYANI M, COOPERSTEIN I, et al. 3D printing of shape memory polymers for flexible electronic devices[J]. Advanced Materials, 2016, 28(22): 4449-4454. |
10 | YAO X F, LIN Y Z. Emerging manufacturing paradigm shifts for the incoming industrial revolution[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(5/6/7/8): 1665-1676. |
48 | GOODRIDGE R D, HAGUE R J M, TUCK C J. An empirical study into laser sintering of ultra-high molecular weight polyethylene (UHMWPE)[J]. Journal of Materials Processing Technology, 2010, 210(1): 72-80. |
49 | LISI LEITE J, SALMORIA G V, PAGGI R A, et al. Microstructural characterization and mechanical properties of functionally graded PA12/HDPE parts by selective laser sintering[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(5/6/7/8): 583-591. |
11 | WANG Y, ROUHOLAMIN D, DAVIES R, et al. Powder characteristics, microstructure and properties of graphite platelet reinforced poly ether ether ketone composites in high temperature laser sintering (HT-LS)[J]. Materials & Design, 2015, 88: 1310-1320. |
12 | ZHU W, YAN C Z, SHI Y S, et al. Investigation into mechanical and microstructural properties of polypropylene manufactured by selective laser sintering in comparison with injection molding counterparts[J]. Materials & Design, 2015, 82: 37-45. |
13 | BAI J M, ZHANG B C, SONG J, et al. The effect of processing conditions on the mechanical properties of polyethylene produced by selective laser sintering[J]. Polymer Testing, 2016, 52: 89-93. |
14 | ANTON S R, SODANO H A. A review of power harvesting using piezoelectric materials (2003—2006)[J]. Smart Materials and Structures, 2007, 16(3): R1-R21. |
15 | MAHANTY B, GHOSH S K, GARAIN S, et al. An effective flexible wireless energy harvester/sensor based on porous electret piezoelectric polymer[J]. Materials Chemistry and Physics, 2017, 186: 327-332. |
16 | DECKARD C R. Method for producing parts by selective sintering: US5639070[P]. 1997-06-17. |
50 | SCHMIDT J, SACHS M, FANSELOW S, et al. Optimized polybutylene terephthalate powders for selective laser beam melting[J]. Chemical Engineering Science, 2016, 156: 1-10. |
51 | GIBSON I, SHI D P. Material properties and fabrication parameters in selective laser sintering process[J]. Rapid Prototyping Journal, 1997, 3(4): 129-136. |
17 | CHATHAM C A, LONG T E, WILLIAMS C B. A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing[J]. Progress in Polymer Science, 2019, 93: 68-95. |
18 | HOPKINSON N, DICKNES P. Analysis of rapid manufacturing—using layer manufacturing processes for production[J]. Proceedings of the Institution of Mechanical Engineers C: Journal of Mechanical Engineering Science, 2003, 217(1): 31-39. |
52 | SCHMID M, AMADO A, WEGENER K. Polymer powders for selective laser sintering(SLS)[C]//Proceedings of the AIP Conference, 2015. |
53 | MAZZOLI A, FERRETTI C, GIGANTE A, et al. Selective laser sintering manufacturing of polycaprolactone bone scaffolds for applications in bone tissue engineering[J]. Rapid Prototyping Journal, 2015, 21(4): 386-392. |
19 | RUFFO M, TUCK C, HAGUE R. Cost estimation for rapid manufacturing - laser sintering production for low to medium volumes[J]. Proceedings of the Institution of Mechanical Engineers B: Journal of Engineering Manufacture, 2006, 220(9): 1417-1427. |
20 | LEVY G N, SCHINDEL R, KRUTH J P. Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives[J]. CIRP Annals, 2003, 52(2): 589-609. |
54 | VELU R, SINGAMNENI S. Selective laser sintering of polymer biocomposites based on polymethyl methacrylate[J]. Journal of Materials Research, 2014, 29(17): 1883-1892. |
55 | NGO T T, BLAIR S, KUWAHARA K, et al. Drug impregnation for laser sintered poly(methyl methacrylate) biocomposites using supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2018, 136: 29-36. |
21 | KRUTH J P, LEVY G, KLOCKE F, et al. Consolidation phenomena in laser and powder-bed based layered manufacturing[J]. CIRP Annals, 2007, 56(2): 730-759. |
22 | 贾礼宾, 王修春, 王小军, 等. 选择性激光烧结技术研究与应用进展[J]. 信息技术与信息化, 2015(11): 172-175. |
56 | MYS N, VERBERCKMOES A, CARDON L. Processing of syndiotactic polystyrene to microspheres for part manufacturing through selective laser sintering[J]. Polymers, 2016, 8(11): 383. |
57 | LI Z C, WANG Z H, GAN X P, et al. Selective laser sintering 3D printing: a way to construct 3D electrically conductive segregated network in polymer matrix[J]. Macromolecular Materials and Engineering, 2017, 302(11): 1700211. |
22 | JIA Libin, WANG Xiuchun, WANG Xiaojun, et al. The research and application progress of selected laser sintering technology[J]. Information Technology and Informatization, 2015(11): 172-175. |
23 | WEGNER A. New polymer materials for the laser sintering process: polypropylene and others[J]. Physics Procedia, 2016, 83: 1003-1012. |
24 | SINGH S, SHARMA V S, SACHDEVA A. Progress in selective laser sintering using metallic powders: a review[J]. Materials Science and Technology, 2016, 32(8): 760-772. |
25 | MYS N, VERBERCKMOES A, CARDON L. Spray drying as a processing technique for syndiotactic polystyrene to powder form for part manufacturing through selective laser sintering[J]. JOM, 2017, 69(3): 551-556. |
58 | SCHMID M, AMADO A, WEGENER K. Materials perspective of polymers for additive manufacturing with selective laser sintering[J]. Journal of Materials Research, 2014, 29(17): 1824-1832. |
59 | WANG X, JIANG M, ZHOU Z W, et al. 3D printing of polymer matrix composites: a review and prospective[J]. Composites Part B: Engineering, 2017, 110: 442-458. |
26 | FANSELOW S, EMAMJOMEH S E, WIRTH K E, et al. Production of spherical wax and polyolefin microparticles by melt emulsification for additive manufacturing[J]. Chemical Engineering Science, 2016, 141: 282-292. |
27 | 杨洁, 王庆顺, 关鹤. 选择性激光烧结技术原材料及技术发展研究[J]. 黑龙江科学, 2017, 8(20): 30-33. |
YANG Jie, WANG Qingshun, GUAN He. Selective laser sintering technology of raw materials and technology development[J]. Heilongjiang Science, 2017, 8(20): 30-33. | |
28 | 顾冬冬, 沈以赴. 青铜-镍粉末直接选择性激光烧结的研究[J]. 国外金属热处理, 2003, 24(5): 34-37. |
GU Dongdong, SHEN Yifu. Study on direct selective laser sintering of bronze-nickel powder[J]. Heat Treament of Metals Abroad, 2003, 24(5): 34-37. | |
29 | 李栋, 唐昆贵, 付龙. 3D打印的气缸盖砂芯[J]. 铸造, 2016, 65(4): 325-328. |
60 | SALMORIA G V, LEITE J L, PAGGI R A. The microstructural characterization of PA6/PA12 blend specimens fabricated by selective laser sintering[J]. Polymer Testing, 2009, 28(7): 746-751. |
61 | ATHREYA S R, KALAITZIDOU K, DAS S. Processing and characterization of a carbon black-filled electrically conductive nylon-12 nanocomposite produced by selective laser sintering[J]. Materials Science and Engineering A, 2010, 527(10/11): 2637-2642. |
62 | ATHREYA S R, KALAITZIDOU K, DAS S. Mechanical and microstructural properties of nylon-12/carbon black composites: selective laser sintering versus melt compounding and injection molding[J]. Composites Science and Technology, 2011, 71(4): 506-510. |
63 | BAI J M, GOODRIDGE R D, HAGUE R J M, et al. Improving the mechanical properties of laser-sintered polyamide 12 through incorporation of carbon nanotubes[J]. Polymer Engineering & Science, 2013, 53(9): 1937-1946. |
64 | ZHU W, YAN C, SHI Y S, et al. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites [J]. Scientific Reports, 2016, 6: 33780. |
65 | WU J, CHEN H, WU Q, et al. Surface modification of carbon fibers and the selective laser sintering of modified carbon fiber/nylon 12 composite powder[J]. Materials & Design, 2017, 116: 253-260. |
66 | ALAYAVALLI K, BOURELL D L. Fabrication of modified graphite bipolar plates by indirect selective laser sintering (SLS) for direct methanol fuel cells[J]. Rapid Prototyping Journal, 2010, 16(4): 268-274. |
67 | GUO N N, LEU M C. Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3558-3566. |
68 | CHEN B L, BERRETTA S, EVANS K, et al. A primary study into graphene/polyether ether ketone (PEEK) nanocomposite for laser sintering[J]. Applied Surface Science, 2018, 428: 1018-1028. |
69 | CHUNG H, DAS S. Functionally graded nylon-11/silica nanocomposites produced by selective laser sintering[J]. Materials Science and Engineering A, 2008, 487(1/2): 251-257. |
70 | WANG Y, JAMES E, GHITA O R. Glass bead filled polyetherketone (PEK) composite by high temperature laser sintering (HT-LS)[J]. Materials & Design, 2015, 83: 545-551. |
71 | HON K K B, GILL T J. Selective laser sintering of SiC/polyamide composites[J]. CIRP Annals, 2003, 52(1): 173-176. |
72 | DU Y Y, LIU H M, YANG Q, et al. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits[J]. Biomaterials, 2017, 137: 37-48. |
73 | SONG X H, LI W, SONG P H, et al. Selective laser sintering of aliphatic-polycarbonate/hydroxyapatite composite scaffolds for medical applications[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(1/2/3/4): 15-25. |
74 | SUBRAMANIAN K, VAIL N, BARLOW J, et al. Selective laser sintering of alumina with polymer binders[J]. Rapid Prototyping Journal, 1995, 1(2): 24-35. |
75 | ZHENG H Z, ZHANG J, LU S Q, et al. Effect of core-shell composite particles on the sintering behavior and properties of nano-Al2O3/polystyrene composite prepared by SLS[J]. Materials Letters, 2006, 60(9/10): 1219-1223. |
76 | ALMANSOORI A, SEABRIGHT R, MAJEWSKI C, et al. Feasibility of plasma treated clay in clay/polymer nanocomposites powders for use laser sintering (LS)[J]. IOP Conference Series: Materials Science and Engineering, 2017, 195: 012003. |
77 | GUO Y L, JIANG K Y, BOURELL D L. Preparation and laser sintering of limestone PA12 composite[J]. Polymer Testing, 2014, 37: 210-215. |
78 | ZHANG Y H, FANG J, LI J, et al. The effect of carbon nanotubes on the mechanical properties of wood plastic composites by selective laser sintering[J]. Polymers, 2017, 9(12): 728. |
79 | CHUNG H, DAS S. Processing and properties of glass bead particulate-filled functionally graded nylon-11 composites produced by selective laser sintering[J]. Materials Science and Engineering A, 2006, 437(2): 226-234. |
80 | PEI A H, LIU A D, XIE T X, et al. A new strategy for the preparation of polyamide-6 microspheres with designed morphology[J]. Macromolecules, 2006, 39(23): 7801-7804. |
81 | CAI X X, ZHANG Y L, WU G Z. A novel approach to prepare PA6/Fe3O4 microspheres for protein immobilization[J]. Journal of Applied Polymer Science, 2011, 122(4): 2271-2277. |
82 | YUAN S Q, SHEN F, CHUA C K, et al. Polymeric composites for powder-based additive manufacturing: materials and applications[J]. Progress in Polymer Science, 2019, 91: 141-168. |
83 | YANG S Q, BAI S B, WANG Q. Polymeric composites for powder-based additive manufacturing: materials and applications[J]. Composites Science and Technology, 2018, 158: 34-42. |
84 | YANG S Q, BAI S B, WANG Q. Preparation of fine fiberglass-resin powders from waste printed circuit boards by different milling methods for reinforcing polypropylene composites[J]. Journal of Applied Polymer Science, 2015, 132(35): DOI:10.1002/app.42494. |
85 | HE P, BAI S B, WANG Q. Structure and performance of poly(vinyl alcohol)/wood powder composite prepared by thermal processing and solid state shear milling technology[J]. Composites Part B: Engineering, 2016, 99: 373-380. |
86 | WANG S J, LIU J Y, CHU L Q, et al. Preparation of polypropylene microspheres for selective laser sintering via thermal-induced phase separation: roles of liquid-liquid phase separation and crystallization[J]. Journal of Polymer Science Part B: Polymer Physics, 2017, 55(4): 320-329. |
87 | ZHOU W Y, LEE S H, WANG M, et al. Selective laser sintering of porous tissue engineering scaffolds from poly(l-lactide)/carbonated hydroxyapatite nanocomposite microspheres[J]. Journal of Materials Science: Materials in Medicine, 2008, 19(7): 2535-2540. |
88 | CHUA C K, LEONG K F, TAN K H, et al. Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects[J]. Journal of Materials Science: Materials in Medicine, 2004, 15(10): 1113-1121. |
89 | WAHAB M S, DALGARNO K W, COCHRANE R F, et al. Development of polymer nanocomposites for rapid prototyping process[M]//Proceedings of the World Congress on Engineering, London, UK, 2009. |
90 | MYS N, SANDE R V D, VERBERCKMOES A, et al. Processing of polysulfone to free flowing powder by mechanical milling and spray drying techniques for use in selective laser sintering[J]. Polymers, 2016, 8(4): 150. |
91 | QI F W, CHEN N, WANG Q. Preparation of PA11/BaTiO3 nanocomposite powders with improved processability, dielectric and piezoelectric properties for use in selective laser sintering[J]. Materials & Design, 2017, 131: 135-143. |
92 | GUO D, LI L T, CAI K. Rapid prototyping of piezoelectric ceramics via selective laser sintering and gelcasting[J]. Journal of the American Ceramic Society, 2004, 87(1): 17-22. |
93 | LIU K, SUN H J, TAN Y L, et al. Additive manufacturing of traditional ceramic powder via selective laser sintering with cold isostatic pressing[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1/2/3/4): 945-952. |
94 | STROBBE D, DADBAKHSH S, VERBELEN L, et al. Selective laser sintering of polystyrene: a single-layer approach[J]. Plastics, Rubber and Composites, 2018, 47(1): 2-8. |
95 | RÖDEL J, WEBBER K G, DITTMER R, et al. Transferring lead-free piezoelectric ceramics into application[J]. Journal of the European Ceramic Society, 2015, 35(6): 1659-1681. |
96 | KESWANI B C, DEVAN R S, KAMBALE R C, et al. Correlation between structural, magnetic and ferroelectric properties of Fe-doped (Ba-Ca)TiO3 lead-free piezoelectric[J]. Journal of Alloys and Compounds, 2017, 712: 320-333. |
97 | SMITH M B, PAGE K, SIEGRIST T, et al. Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3[J]. Journal of the American Chemical Society, 2008, 130(22): 6955-6963. |
98 | 刘欣然. 聚合物基压电复合材料研究进展[J]. 河北民族师范学院学报, 2017, 37(1): 123-128. |
LIU Xinran. Research progress on polymer-based piezoelectric composites[J]. Journal of Hebei Normal University for Nationalities, 2017, 37(1): 123-128. | |
99 | FRUBING P, KREMMER A, NEUMANN W, et al. Dielectric relaxation in piezo-, pyro- and ferroelectric polyamide 11[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(2): 271-279. |
100 | DAVID C, CAPSAL J F, LAFFONT L, et al. Piezoelectric properties of polyamide 11/NaNbO3 nanowire composites[J]. Journal of Physics D: Applied Physics, 2012, 45(41): 415305. |
101 | CARPONCIN D, DANTRAS E, DANDURAND J, et al. Electrical and piezoelectric behavior of polyamide/PZT/CNT multifunctional nanocomposites[J]. Advanced Engineering Materials2014, 16(8): 1018-1025. |
102 | CAPSAL J F, DANTRAS E, LAFFONT L, et al. Nanotexture influence of BaTiO3 particles on piezoelectric behaviour of PA11/BaTiO3 nanocomposites[J]. Journal of Non-Crystalline Solids, 2010, 356(11-17): 629-634. |
103 | KAKIMOTO K I, FUKATA K, OGAWA H. Fabrication of fibrous BaTiO3-reinforced PVDF composite sheet for transducer application[J]. Sensors and Actuators A: Physical, 2013, 200: 21-25. |
104 | BAJI A, MAI Y W, LI Q, et al. Nanoscale investigation of ferroelectric properties in electrospun Barium titanate/polyvinylidene fluoride composite fibers using piezoresponse force microscopy[J]. Composites Science and Technology, 2011, 71(11): 1435-1440. |
105 | ZHANG C H, HU Z, GAO G, et al. Damping behavior and acoustic performance of polyurethane/lead zirconate titanate ceramic composites[J]. Materials & Design, 2013, 46: 503-510. |
106 | KIM K, ZHU W, QU X, et al. 3D optical printing of piezoelectric nanoparticle-polymer composite materials[J]. ACS Nano, 2014, 8(10): 9799-9806. |
107 | CHINYA I, PAL A, SEN S. Polyglycolated zinc ferrite incorporated poly(vinylidene fluoride)(PVDF) composites with enhanced piezoelectric response[J]. Journal of Alloys and Compounds, 2017, 722: 829-838. |
108 | PARK K I, LEE M, LIU Y, et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons[J]. Advanced Materials, 2012, 24(22): 2999-3004, 2937. |
109 | WANG Z, WANG T, FANG M R, et al. Enhancement of dielectric and electrical properties in BFN/Ni/PVDF three-phase composites[J]. Composites Science and Technology, 2017, 146: 139-146. |
110 | TONG W S, AN Q, WANG Z H, et al. Enhanced electricity generation and tunable preservation in porous polymeric materials via coupled piezoelectric and dielectric processes[J]. Advanced Materials, 2020, 32(39): 2003087. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[3] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[4] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[5] | CHEN Na, ZHANG Xiaojing, ZHANG Nan, MA Bingbing, ZHANG Han, YANG Haojie, ZHANG Hongzhong. Effect of quenching enzymes on partial nitrification-mixed autotrophic nitrogen removal system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3816-3823. |
[6] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[7] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
[8] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
[9] | FENG Wanqi, HANISHA·Bhahti , GE Yuxuan, ZHAO Jianbo. Preparation and properties of magnetic polyaspartic acid/polyacrylamide semi-interpenetrating hydrogel [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3130-3137. |
[10] | ZENG Tianxu, ZHANG Yongxian, YAN Yuan, LIU Hong, MA Jiao, DANG Hongzhong, WU Xinbo, LI Weiwei, CHEN Yongzhi. Effects of hydroxylamine on the activity and kinetic parameters of nitrifying bacteria [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3272-3280. |
[11] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[12] | SONG Minhang, ZHAO Lixin, XU Baorui, LIU Lin, ZHANG Shuang. Research progress of cyclone-enhanced separation based on disperse phase rearrangement at the inlet [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2219-2232. |
[13] | LIU Houli, GU Zhonghao, YANG Kang, ZHANG Li. Effect of groove width on pool boiling heat transfer characteristics in 3D printing groove structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2282-2288. |
[14] | QI Chenglu, ZHANG Zhongliang, WANG Mingchao, LI Yaopeng, GONG Xiaohui, SUN Peng, ZHENG Bin. Effects of built-in tube bundle arrangements on solid particle flow characteristics in heat exchangers [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2306-2314. |
[15] | LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui. Biosynthesis and EOR application of magnetic Fe3O4 NPs [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |