1 |
ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10): 636-639.
|
2 |
PENG Ming, QIAO Yijin, LUO Min, et al. Bioinspired Fe3C@C as highly efficient electrocatalyst for nitrogen reduction reaction under ambient conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40062-40068.
|
3 |
SMIL V. Detonator of the population explosion[J]. Nature, 1999, 400(6743): 415-415.
|
4 |
ZAMFIRESCU C, DINCER I. Using ammonia as a sustainable fuel[J]. Journal of Power Sources, 2008, 185(1): 459-465.
|
5 |
GIDDEY S, BADWAL S P S, KULKARNI A. Review of electrochemical ammonia production technologies and materials[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14576-14594.
|
6 |
SCHLÖGL R. Catalytic synthesis of ammonia—A “never-ending story”?[J]. Angewandte Chemie: International Edition, 2003, 42(18): 2004-2008.
|
7 |
GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892.
|
8 |
WANG Lu, XIA Meikun, WANG Hong, et al. Greening ammonia toward the solar ammonia refinery[J]. Joule, 2018, 2(6): 1055-1074.
|
9 |
LI Sijia, BAO Di, SHI Miaomiao, et al. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions[J]. Advanced Materials, 2017, 29(33): 1700001.
|
10 |
GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70: 153-226.
|
11 |
BAO Di, ZHANG Qi, MENG Fanlu, et al. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle[J]. Advanced Materials, 2017, 29(3): 1604799.
|
12 |
CHEN Jingguang G, CROOKS R M, SEEFELDT L C, et al. Beyond fossil fuel-driven nitrogen transformations[J]. Science, 2018, 360(6391): eaar6611.
|
13 |
BROWN K A, HARRIS D F, WILKER M B, et al. Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid[J]. Science, 2016, 352(6284): 448-450.
|
14 |
SHI Run, ZHAO Yunxuan, WATERHOUSE G I N, et al. Defect engineering in photocatalytic nitrogen fixation[J]. ACS Catalysis, 2019, 9(11): 9739-9750.
|
15 |
ZHENG Biyuan, MA Chao, LI Dong, et al. Band alignment engineering in two-dimensional lateral heterostructures[J]. Journal of the American Chemical Society, 2018, 140(36): 11193-11197.
|
16 |
GUO Chunxian, RAN Jingrun, VASILEFF A, et al. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions[J]. Energy & Environmental Science, 2018, 11(1): 45-56.
|
17 |
CHEN Gaofeng, REN Shiyu, ZHANG Lili, et al. Nitrogen reduction reactions: advances in electrocatalytic N2 reduction—strategies to tackle the selectivity challenge[J]. Small Methods, 2019, 3(6): 1970016.
|
18 |
CUI Xiaoyang, TANG Cheng, ZHANG Qiang. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Advanced Energy Materials, 2018, 8(22): 1800369.
|
19 |
LIU Ruiquan, XU Gaochao. Comparison of electrochemical synthesis of ammonia by using sulfonated polysulfone and nation membrane with Sm1.5Sr0.5NiO4[J]. Chinese Journal of Chemistry, 2010, 28(2): 139-142.
|
20 |
KORDALI V, KYRIACOU G, LAMBROU C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell[J]. Chemical Communications, 2000(17): 1673-1674.
|
21 |
KUGLER K, LUHN M, SCHRAMM J A, et al. Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis[J]. Physical Chemistry Chemical Physics, 2015, 17(5): 3768-3782.
|
22 |
LIU Yanyan, HAN Miaomiao, XIONG Qizhong, et al. Dramatically enhanced ambient ammonia electrosynthesis performance by in-operando created Li-S interactions on MoS2 electrocatalyst[J]. Advanced Energy Materials, 2019, 9(14): 1803935.
|
23 |
ZHU Xiaojuan, LIU Zaichun, LIU Qin, et al. Efficient and durable N2 reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst[J]. Chemical Communications, 2018, 54(80): 11332-11335.
|
24 |
LI Laiquan, TANG Cheng, YAO Dazhi, et al. Electrochemical nitrogen reduction: identification and elimination of contamination in electrolyte[J]. ACS Energy Letters, 2019, 4: 2111-2116.
|
25 |
LIU Yanming, SU Yan, QUAN Xie, et al. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon[J]. ACS Catalysis, 2018, 8(2): 1186-1191.
|
26 |
LI Laiquan, TANG Cheng, XIA Bingquan, et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction[J]. ACS Catalysis, 2019, 9(4): 2902-2908.
|
27 |
LIN Yunxiang, YANG Li, JIANG Hongliang, et al. Sulfur atomically doped bismuth nanobelt driven by electrochemical self-reconstruction for boosted electrocatalysis[J]. The Journal of Physical Chemistry Letters, 2020, 11(5): 1746-1752.
|
28 |
LI Peipei, LIU Zaichun, WU Tongwei, et al. Ambient electrocatalytic N2 reduction to NH3 by metal fluorides[J]. Journal of Materials Chemistry A, 2019, 7(30): 17761-17765.
|
29 |
LI Yuanfang, LI Tingshuai, ZHU Xiaojuan, et al. DyF3: an efficient electrocatalyst for N2 fixation to NH3 under ambient conditions[J]. Chemistry: an Asian Journal, 2020, 15(4): 487-489.
|
30 |
MONTOYA J H, TSAI C, VOJVODIC A, et al. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations[J]. ChemSusChem, 2015, 8(13): 2180-2186.
|
31 |
HÖSKULDSSON Á B, ABGHOUI Y, GUNNARSDÓTTIR A B, et al. Computational screening of rutile oxides for electrochemical ammonia formation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10327-10333.
|
32 |
ABGHOUI Y, GARDEN A L, HLYNSSON V F, et al. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design[J]. Physical Chemistry Chemical Physics, 2015, 17(7): 4909-4918.
|
33 |
TANG Cheng, QIAO Shizhang. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully[J]. Chemical Society Reviews, 2019, 48: 3166-3180.
|
34 |
Xingshuai LYU, WEI Wei, LI Fengping, et al. Metal-free B@g-CN: visible/infrared light-driven single atom photocatalyst enables spontaneous dinitrogen reduction to ammonia[J]. Nano Letters, 2019, 19(9): 6391-6399.
|
35 |
MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8): 17033.
|
36 |
LING Chongyi, ZHANG Yehui, LI Qiang, et al. New mechanism for N2 reduction: the essential role of surface hydrogenation[J]. Journal of the American Chemical Society, 2019, 141(45): 18264-18270.
|
37 |
ABGHOUI Y, SKÚLASON E. Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group Ⅲ-Ⅶtransition metal mononitrides[J]. Catalysis Today, 2017, 286: 78-84.
|
38 |
WAN Yuchi, XU Jichu, Ruitao LÜ. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions[J]. Materials Today, 2019, 27: 69-90.
|
39 |
SKULASON E, BLIGAARD T, GUDMUNDSDOTTIR S, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Physical Chemistry Chemical Physics, 2012, 14(3): 1235-1245.
|
40 |
YAO Yao, WANG Haijiang, YUAN Xiaozi, et al. Electrochemical nitrogen reduction reaction on ruthenium[J]. ACS Energy Letters, 2019, 4(6): 1336-1341.
|
41 |
ZHAO Runbo, LIU Chuangwei, ZHANG Xiaoxue, et al. An ultrasmall Ru2P nanoparticles-reduced graphene oxide hybrid: an efficient electrocatalyst for NH3 synthesis under ambient conditions[J]. Journal of Materials Chemistry A, 2020, 8(1): 77-81.
|
42 |
SHI Yun, YANG Yong, LI Yongwang, et al. Mechanisms of Mo2C(101)-catalyzed furfural selective hydrodeoxygenation to 2-methylfuran from computation[J]. ACS Catalysis, 2016, 6(10): 6790-6803.
|
43 |
CHENG Hui, DING Liangxin, CHEN Gaofeng, et al. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions[J]. Advanced Materials, 2018, 30(46): 1803694.
|
44 |
HUI Lan, XUE Yurui, YU Huidi, et al. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst[J]. Journal of the American Chemical Society, 2019, 141(27): 10677-10683.
|
45 |
LI Jie, CHEN Shang, QUAN Fengjiao, et al. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions[J]. Chem, 2020, 6(4): 885-901.
|
46 |
NAZEMI M, PANIKKANVALAPPIL S R, EL-SAYED M A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages[J]. Nano Energy, 2018, 49: 316-323.
|
47 |
LIU Huimin, HAN Shuhe, ZHAO Yue, et al. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction[J]. Journal of Materials Chemistry A, 2018, 6(7): 3211-3217.
|
48 |
ZHANG Ya, QIU Weibin, MA Yongjun, et al. High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions[J]. ACS Catalysis, 2018, 8(9): 8540-8544.
|
49 |
CHOI Changhyeok, BACK Seoin, KIM Na Young, et al. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline[J]. ACS Catalysis, 2018, 8(8): 7517-7525.
|
50 |
YANDULOV D V, SCHROCK R R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center[J]. Science, 2003, 301(5629): 76-78.
|
51 |
HAN Lili, LIU Xijun, CHEN Jinping, et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation[J]. Angewandte Chemie: International Edition, 2019, 58(8): 2321-2325.
|
52 |
ZANG Wenjie, YANG Tong, ZOU Haiyuan, et al. Copper single atoms anchored in porous nitrogen-doped carbon as efficient pH-universal catalysts for the nitrogen reduction reaction[J]. ACS Catalysis, 2019, 9(11): 10166-10173.
|
53 |
GENG Zhigang, LIU Yan, KONG Xiangdong, et al. Achieving a record-high yield rate of 120.9 ·mgcat-1·h-1 for N2 electrochemical reduction over Ru single-atom catalysts[J]. Advanced Materials, 2018, 30(40): 1803498.
|
54 |
SATO S, TAKAHASHI R, KOBUNE M, et al. Basic properties of rare earth oxides[J]. Applied Catalysis A: General, 2009, 356(1): 57-63.
|
55 |
LUO Yun, HABRIOUX A, CALVILLO L, et al. Thermally induced strains on the catalytic activity and stability of Pt-M2O3/C (M=Y or Gd) catalysts towards oxygen reduction reaction[J]. ChemCatChem, 2015, 7(10): 1573-1582.
|
56 |
LIU Jieyuan, KONG Xue, ZHENG Lirong, et al. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction[J]. ACS Nano, 2020, 14(1): 1093-1101.
|
57 |
WANG Mengfan, LIU Sisi, QIAN Tao, et al. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential[J]. Nature Communications, 2019, 10(1): 341.
|
58 |
JEONG Hojin, SHIN Sangyong, Hyunjoo LEE. Heterogeneous atomic catalysts overcoming the limitations of single-atom catalysts[J]. ACS Nano, 2020, 14(11): 14355-14374.
|
59 |
SHI Miaomiao, BAO Di, WULAN Bari, et al. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions[J]. Advanced Materials, 2017, 29(17): 1606550.
|
60 |
LIU Huiling, NOSHEEN F, WANG Xun. Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property[J]. Chemical Society Reviews, 2015, 44(10): 3056-3078.
|
61 |
JIANG Yaqi, SU Jingyun, YANG Yanan, et al. A facile surfactant-free synthesis of Rh flower-like nanostructures constructed from ultrathin nanosheets and their enhanced catalytic properties[J]. Nano Research, 2016, 9(3): 849-856.
|
62 |
LI Chengbo, MOU Shiyong, ZHU Xiaojuan, et al. Dendritic Cu: a high-efficiency electrocatalyst for N2 fixation to NH3 under ambient conditions[J]. Chemical Communications, 2019, 55(96): 14474-14477.
|
63 |
REN Xiang, ZHAO Xiang, WEI Qin, et al. High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod[J]. ACS Central Science, 2019, 5(1): 116-121.
|
64 |
DU Huitong, GUO Xiaoxi, KONG Rongmei, et al. Cr2O3 nanofiber: a high-performance electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions[J]. Chemical Communications, 2018, 54(91): 12848-12851.
|
65 |
STRASSER P, KOH S, ANNIYEV T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J]. Nature Chemistry, 2010, 2(6): 454-460.
|
66 |
YANG Yijie, WANG Shuqi, WEN Haoming, et al. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation[J]. Angewandte Chemie: International Edition, 2019, 58(43): 15362-15366.
|
67 |
ZHANG Jin, JI Yujin, WANG Pengtang, et al. Adsorbing and activating N2 on heterogeneous Au-Fe3O4 nanoparticles for N2 fixation[J]. Advanced Functional Materials, 2019, 30(4): 1906579.
|
68 |
LIN Yunxiao, ZHANG Shinan, XUE Zhonghua, et al. Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles[J]. Nature Communications, 2019, 10(1): 4380.
|
69 |
LIU Yitao, CHEN Xingxing, YU Jianyong, et al. Carbon-nanoplated CoS@TiO2 nanofibrous membrane: an interface-engineered heterojunction for high-efficiency electrocatalytic nitrogen reduction[J]. Angewandte Chemie: International Edition, 2019, 58(52): 18903-18907.
|
70 |
LUO Shijian, LI Xiaoman, GAO Wanguo, et al. An MOF-derived C@NiO@Ni electrocatalyst for N2 conversion to NH3 in alkaline electrolytes[J]. Sustainable Energy & Fuels, 2020, 4(1): 164-170.
|
71 |
CHEN Pengzuo, ZHANG Nan, WANG Sibo, et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6635-6640.
|
72 |
ZHOU Fengling, AZOFRA L M, ALI M, et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids[J]. Energy & Environmental Science, 2017, 10(12): 2516-2520.
|
73 |
FURUYA N, YOSHIBA H. Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by Fe-phthalocyanine[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 263(1): 171-174.
|
74 |
LIU Yitao, TANG Lu, DAI Jin, et al. Promoted electrocatalytic nitrogen fixation in Fe-Ni layered double hydroxide arrays coupled to carbon nanofibers: the role of phosphorus doping[J]. Angewandte Chemie: International Edition, 2020, 59(32): 13623-13627.
|
75 |
ZHOU Kebin, LI Yadong. Catalysis based on nanocrystals with well-defined facets[J]. Angewandte Chemie: International Edition, 2012, 51(3): 602-613.
|
76 |
WANG Juan, HUANG Bolong, JI Yujin, et al. A general strategy to glassy M-Te (M = Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation[J]. Advanced Materials, 2020, 32(11): 1907112.
|
77 |
ROBERTS F S, KUHL K P, NILSSON A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts[J]. Angewandte Chemie: International Edition, 2015, 54(17): 5179-5182.
|
78 |
WANG Tao, TIAN Xinxin, YANG Yong, et al. Coverage-dependent N2 adsorption and its modification of iron surfaces structures[J]. The Journal of Physical Chemistry C, 2016, 120(5): 2846-2854.
|
79 |
YANG Dashuai, CHEN Ting, WANG Zhijiang. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm[J]. Journal of Materials Chemistry A, 2017, 5(36): 18967-18971.
|
80 |
HAN Jingrui, LIU Zaichun, MA Yongjun, et al. Ambient N2 fixation to NH3 at ambient conditions: using Nb2O5 nanofiber as a high-performance electrocatalyst[J]. Nano Energy, 2018, 52: 264-270.
|
81 |
Chade LÜ, YAN Chunshuang, CHEN Gang, et al. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions[J]. Angewandte Chemie: International Edition, 2018, 57(21): 6073-6076.
|
82 |
SHI Miaomiao, BAO Di, LI Sijia, et al. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution[J]. Advanced Energy Materials, 2018, 8(21): 1800124.
|
83 |
XIE Chao, YAN Dafeng, LI Hao, et al. Defect chemistry in heterogeneous catalysis: recognition, understanding and utilization[J]. ACS Catalysis, 2020, 10(19): 11082-11098
|
84 |
XUE Zhonghua, ZHANG Shinan, LIN Yunxiao, et al. Electrochemical reduction of N2 into NH3 by donor-acceptor couples of Ni and Au nanoparticles with a 67.8% Faradaic efficiency[J]. Journal of the American Chemical Society, 2019, 141(38): 14976-14980.
|
85 |
XU Wence, FAN Guilan, CHEN Jialiang, et al. Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions[J]. Angewandte Chemie: International Edition, 2019, 59(9): 3511-3516.
|
86 |
LUO Yaru, CHEN Gaofeng, DING Li, et al. Efficient electrocatalytic N2 fixation with MXene under ambient conditions[J]. Joule, 2019, 3(1): 279-289.
|
87 |
ZHANG Jing, TIAN Xiaoyin, LIU Mingjie, et al. Cobalt-modulated molybdenum-dinitrogen interaction in MoS2 for catalyzing ammonia synthesis[J]. Journal of the American Chemical Society, 2019, 141(49): 19269-19275.
|
88 |
WANG Jun, YU Liang, HU Lin, et al. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential[J]. Nature Communications, 2018, 9(1): 1795.
|
89 |
PANG Fangjie, WANG Zhifeng, ZHANG Kai, et al. Bimodal nanoporous Pd3Cu1 alloy with restrained hydrogen evolution for stable and high yield electrochemical nitrogen reduction[J]. Nano Energy, 2019, 58: 834-841.
|
90 |
TONG Yueyu, GUO Haipeng, LIU Daolan, et al. Vacancy engineering of Fe-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction[J]. Angewandte Chemie: International Edition, 2020, 59(19): 7356-7361.
|
91 |
GUO Chengying, LIU Xuejing, GAO Lingfeng, et al. Fe-doped Ni2P nanosheets with porous structure for electroreduction of nitrogen to ammonia under ambient conditions[J]. Applied Catalysis B: Environmental, 2019, 263: 118296.
|
92 |
CHU Ke, CHENG Yonghua, LI Qingqing, et al. Fe-doping induced morphological changes, oxygen vacancies and Ce3+-Ce3+ pairs in CeO2 for promoting electrocatalytic nitrogen fixation[J]. Journal of Materials Chemistry A, 2020, 8(12): 5865-5873
|
93 |
WU Tongwei, ZHU Xiaojuan, XING Zhe, et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticle by iron doping[J]. Angewandte Chemie: International Edition, 2019, 58(51): 18449-18453.
|
94 |
WU Tongwei, KONG Wenhan, ZHANG Ya, et al. Greatly enhanced electrocatalytic N2 reduction on TiO2via V doping[J]. Small Methods, 2019, 3(11): 1900356.
|
95 |
WANG Yuan, JIA Kun, PAN Qi, et al. Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(1): 117-122.
|
96 |
JIA Kun, WANG Yuan, PAN Qi, et al. Enabling the electrocatalytic fixation of N2 to NH3 by C-doped TiO2 nanoparticles under ambient conditions[J]. Nanoscale Advances, 2019, 1(3): 961-964.
|
97 |
QIN Qing, ZHAO Yun, SCHMALLEGGER M, et al. Enhanced electrocatalytic N2 reduction via partial anion substitution in titanium oxide-carbon composites[J]. Angewandte Chemie: International Edition, 2019, 58(37): 13101-13106.
|
98 |
SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137.
|
99 |
ZHAO Jinxiu, ZHANG Lei, XIE Xiaoying, et al. Ti3C2Tx (T= F, OH) MXene nanosheets: conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3[J]. Journal of Materials Chemistry A, 2018, 6(47): 24031-24035.
|
100 |
FANG Yanfeng, LIU Zaichun, HAN Jingrui, et al. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2in situ grown on Ti3C2Tx MXene[J]. Advanced Energy Materials, 2019, 9(16): 1803406.
|
101 |
CHEN Xinrui, GUO Yitian, DU Xinchuan, et al. Atomic structure modification for electrochemical nitrogen reduction to ammonia[J]. Advanced Energy Materials, 2019, 10(3): 1903172.
|
102 |
LUO Shijian, LI Xiaoman, ZHANG Baohai, et al. MOF-derived Co3O4@NC with core-shell structures for N2 electrochemical reduction under ambient conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26891-26897.
|
103 |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
|
104 |
ZHANG Rong, REN Xiang, SHI Xifeng, et al. Enabling effective electrocatalytic N2 conversion to NH3 by the TiO2 nanosheets array under ambient conditions[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28251-28255.
|
105 |
HAN Zishan, CHOI Changhyeok, HONG Song, et al. Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction[J]. Applied Catalysis B: Environmental, 2019, 257: 117896.
|
106 |
YANG Li, WU Tongwei, ZHANG Rong, et al. Insights into defective TiO2 in electrocatalytic N2 reduction: combining theoretical and experimental studies[J]. Nanoscale, 2019, 11(4): 1555-1562.
|
107 |
LI Bingyue, ZHU Xiaojuan, WANG Jianwei, et al. Ti3+ self-doped TiO2-x nanowires for efficient electrocatalytic N2 reduction to NH3[J]. Chemical Communications, 2019, 56(7): 1074-1077.
|
108 |
FANG Caihong, BI Ting, XU Xiaoxiao, et al. Oxygen vacancy-enhanced electrocatalytic performances of TiO2 nanosheets toward N2 reduction reaction[J]. Advanced Materials Interfaces, 2019, 6(21): 1901034.
|
109 |
ZHANG Jianfang, TIAN Yujing, ZHANG Tianyu, et al. Confinement of intermediates in blue TiO2 nanotube arrays boosts reaction rate of nitrogen electrocatalysis[J]. ChemCatChem, 2020, 12(10): 2760-2767.
|
110 |
GAO Minrui, CHAN M K Y, SUN Yugang. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production[J]. Nature Communications, 2015, 6(1): 7493.
|
111 |
LI Xianghong, LI Tingshuai, MA Yongjun, et al. Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower[J]. Advanced Energy Materials, 2018, 8(30): 1801357.
|
112 |
ZHANG Rong, ZHANG Ya, REN Xiang, et al. High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9545-9549.
|
113 |
JIN Huanyu, LI Laiquan, LIU Xin, et al. Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction[J]. Advanced Materials, 2019, 31(32): 1902709.
|
114 |
YANG Xiaohui, LING Faling, SU Jinfeng, et al. Insights into the role of cation vacancy for significantly enhanced electrochemical nitrogen reduction[J]. Applied Catalysis B: Environmental, 2019, 264: 118477.
|
115 |
HU Bo, HU Maowei, SEEFELDT L, et al. Electrochemical dinitrogen reduction to ammonia by Mo2N: catalysis or decomposition?[J]. ACS Energy Letters, 2019, 4(5): 1053-1054.
|
116 |
XIONG Wei, GUO Zheng, ZHAO Shijun, et al. Facile, cost-effective plasma synthesis of self-supportive FeSx on Fe foam for efficient electrochemical reduction of N2 under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7(34): 19977-19983.
|
117 |
SINGH A R, ROHR B A, SCHWALBE J A, et al. Electrochemical ammonia synthesis——The selectivity challenge[J]. ACS Catalysis, 2017, 7(1): 706-709.
|
118 |
MACLEOD K C, HOLLAND P L. Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron[J]. Nature Chemistry, 2013, 5(7): 559-565.
|
119 |
WANG Haibin, WANG Jiaqi, ZHANG Rui, et al. Bionic design of a Mo(Ⅳ)-doped FeS2 catalyst for electroreduction of dinitrogen to ammonia[J]. ACS Catalysis, 2020, 10(9): 4914-4921.
|
120 |
QIN Binhao, LI Yuhang, ZHANG Qiao, et al. Understanding of nitrogen fixation electro catalyzed by molybdenum-iron carbide through the experiment and theory[J]. Nano Energy, 2020, 68: 104374.
|