Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (4): 1948-1965.DOI: 10.16085/j.issn.1000-6613.2020-1949
• Special column:Industrial catalysis • Previous Articles Next Articles
ZHAO Fei(), WANG Qi, LIU Guang(), LI Jinping()
Received:
2020-09-24
Online:
2021-04-14
Published:
2021-04-05
Contact:
LIU Guang,LI Jinping
通讯作者:
刘光,李晋平
作者简介:
赵斐(1995—),女,硕士研究生,研究方向为电催化合成氨。E-mail:基金资助:
CLC Number:
ZHAO Fei, WANG Qi, LIU Guang, LI Jinping. d-Block transition metal-based catalysts for electrocatalytic ammonia synthesis[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1948-1965.
赵斐, 王琪, 刘光, 李晋平. d区过渡金属基催化剂用于电化学合成氨[J]. 化工进展, 2021, 40(4): 1948-1965.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1949
催化剂 | 电解液 | 电位/VRHE | 法拉第效率/% | 氨产率 | 参考文献 |
---|---|---|---|---|---|
Ru2P-rGO | 0.1mol·L-1 HCl | -0.05 | 13.04 | 32.8μg·h-1·mgcat-1 | [ |
Mo2C/C | 0.5mol·L-1 Li2SO4 | -0.3 | 7.8 | 3.7μg·h-1·mgcat-1 | [ |
Mo0/GDY | 0.1mol·L-1 Na2SO4 | -1.2(vs.SCE) | 21 | 145.4μg·h-1·mgcat-1 | [ |
SA-Mo/NPC | 0.1mol·L-1 KOH | -0.3 | 14.6±1.6 | (34.0±3.6)μg·h-1·mgcat-1 | [ |
0.1mol·L-1 HCl | -0.25 | 6.8±0.3 | (31.5±1.2)μg·h-1·mgcat-1 | ||
Cu SAC | 0.1mol·L-1 KOH | -0.35 | 13.8 | 53.3μg·h-1·mgcat-1 | [ |
0.1mol·L-1 HCl | -0.3 | 11.7 | 49.3μg·h-1·mgcat-1 | ||
Ru SAs/N-C | 0.05mol·L-1 H2SO4 | -0.2 | 29.6 | 120.9μg·h-1·mgcat-1 | [ |
Y1/NC | 0.1mol·L-1 HCl | -0.1 | 12.1 | 23.2μg·h-1·cm-2 | [ |
Sc1/NC | 11.2 | 20.4μg·h-1·cm-2 | |||
FeSA-N-C | 0.1mol·L-1 KOH | 0 | 56.55 | 7.48μg·h-1·mgcat-1 | [ |
SACs-MoS2-Fe | 0.1mol·L-1 KCl | -0.2 | 31.6±2 | (97.5±6)μg·h-1·cm-2 | [ |
AuHNCs | 0.5mol·L-1 LiClO4 | -0.4 | 30.2 | [ | |
-0.5 | 3.9μg·h-1·cm-2 | ||||
Rh NNs | 0.1mol·L-1 KOH | -0.2 | 0.217 | 23.88μg·h-1·mgcat-1 | [ |
Dendritic Cu | 0.1mol·L-1 HCl | -0.4 | 15.12 | 25.63μg·h-1·mgcat-1 | [ |
Mo2C | 0.1mol·L-1 HCl | -0.3 | 8.13 | 95.1μg·h-1·mgcat-1 | [ |
Cr2O3 MHCMs | 0.1mol·L-1 Na2SO4 | -0.9 | 6.78 | 25.3μg·h-1·cm-2 | [ |
Cr2O3 nanofibers | 0.1mol·L-1 HCl | -0.75 | 8.56 | 28.13μg·h-1·mgcat-1 | [ |
NPG@ZIF-8 | 0.1mol·L-1 Na2SO4 | -0.6 | 44 | [ | |
-0.8 | (28.7±0.9)μg·h-1·mgcat-1 | ||||
Au-Fe3O4 NPs | 0.1mol·L-1 KOH | -0.2 | 10.54 | 21.42μg·h-1·mgcat-1 | [ |
C@NiO@Ni | 0.1mol·L-1 KOH | -0.7 | 10.9 | 43.15μg·h-1·mgcat-1 | [ |
CoS2/NS-G | 0.05mol·L-1 H2SO4 | -0.05 | 25.9 | [ | |
-0.2 | 25.0μg·h-1·mgcat-1 | ||||
Fe3C@C | 0.05mol·L-1 H2SO4 | -0.2 | 9.15 | 8.53μg·h-1·mgcat-1 | [ |
Cu/PI-300 | 0.1mol·L-1 KOH | -0.3 | 6.56 | [ | |
-0.4 | 17.2μg·h-1·cm-2 | ||||
FeNi-LDH | 0.1mol·L-1 Na2SO4 | -0.5 | 23 | 10.53μg·h-1·cm-2 | [ |
C@CoS@TiO2 | 0.1mol·L-1 Na2SO4 | -0.55 | 28.6 | 49.51μg·h-1·cm-2 | [ |
催化剂 | 电解液 | 电位/VRHE | 法拉第效率/% | 氨产率 | 参考文献 |
---|---|---|---|---|---|
Ru2P-rGO | 0.1mol·L-1 HCl | -0.05 | 13.04 | 32.8μg·h-1·mgcat-1 | [ |
Mo2C/C | 0.5mol·L-1 Li2SO4 | -0.3 | 7.8 | 3.7μg·h-1·mgcat-1 | [ |
Mo0/GDY | 0.1mol·L-1 Na2SO4 | -1.2(vs.SCE) | 21 | 145.4μg·h-1·mgcat-1 | [ |
SA-Mo/NPC | 0.1mol·L-1 KOH | -0.3 | 14.6±1.6 | (34.0±3.6)μg·h-1·mgcat-1 | [ |
0.1mol·L-1 HCl | -0.25 | 6.8±0.3 | (31.5±1.2)μg·h-1·mgcat-1 | ||
Cu SAC | 0.1mol·L-1 KOH | -0.35 | 13.8 | 53.3μg·h-1·mgcat-1 | [ |
0.1mol·L-1 HCl | -0.3 | 11.7 | 49.3μg·h-1·mgcat-1 | ||
Ru SAs/N-C | 0.05mol·L-1 H2SO4 | -0.2 | 29.6 | 120.9μg·h-1·mgcat-1 | [ |
Y1/NC | 0.1mol·L-1 HCl | -0.1 | 12.1 | 23.2μg·h-1·cm-2 | [ |
Sc1/NC | 11.2 | 20.4μg·h-1·cm-2 | |||
FeSA-N-C | 0.1mol·L-1 KOH | 0 | 56.55 | 7.48μg·h-1·mgcat-1 | [ |
SACs-MoS2-Fe | 0.1mol·L-1 KCl | -0.2 | 31.6±2 | (97.5±6)μg·h-1·cm-2 | [ |
AuHNCs | 0.5mol·L-1 LiClO4 | -0.4 | 30.2 | [ | |
-0.5 | 3.9μg·h-1·cm-2 | ||||
Rh NNs | 0.1mol·L-1 KOH | -0.2 | 0.217 | 23.88μg·h-1·mgcat-1 | [ |
Dendritic Cu | 0.1mol·L-1 HCl | -0.4 | 15.12 | 25.63μg·h-1·mgcat-1 | [ |
Mo2C | 0.1mol·L-1 HCl | -0.3 | 8.13 | 95.1μg·h-1·mgcat-1 | [ |
Cr2O3 MHCMs | 0.1mol·L-1 Na2SO4 | -0.9 | 6.78 | 25.3μg·h-1·cm-2 | [ |
Cr2O3 nanofibers | 0.1mol·L-1 HCl | -0.75 | 8.56 | 28.13μg·h-1·mgcat-1 | [ |
NPG@ZIF-8 | 0.1mol·L-1 Na2SO4 | -0.6 | 44 | [ | |
-0.8 | (28.7±0.9)μg·h-1·mgcat-1 | ||||
Au-Fe3O4 NPs | 0.1mol·L-1 KOH | -0.2 | 10.54 | 21.42μg·h-1·mgcat-1 | [ |
C@NiO@Ni | 0.1mol·L-1 KOH | -0.7 | 10.9 | 43.15μg·h-1·mgcat-1 | [ |
CoS2/NS-G | 0.05mol·L-1 H2SO4 | -0.05 | 25.9 | [ | |
-0.2 | 25.0μg·h-1·mgcat-1 | ||||
Fe3C@C | 0.05mol·L-1 H2SO4 | -0.2 | 9.15 | 8.53μg·h-1·mgcat-1 | [ |
Cu/PI-300 | 0.1mol·L-1 KOH | -0.3 | 6.56 | [ | |
-0.4 | 17.2μg·h-1·cm-2 | ||||
FeNi-LDH | 0.1mol·L-1 Na2SO4 | -0.5 | 23 | 10.53μg·h-1·cm-2 | [ |
C@CoS@TiO2 | 0.1mol·L-1 Na2SO4 | -0.55 | 28.6 | 49.51μg·h-1·cm-2 | [ |
催化剂 | 电解液 | 电位/VRHE | 法拉第效率/% | 氨产率 | 参考文献 |
---|---|---|---|---|---|
Au THH NR | 0.1mol·L-1 KOH | -0.2 | 4 | 1.648μg·h-1·cm-2 | [ |
Nb2O5 | 0.1mol·L-1 HCl | -0.55 | 9.26 | 43.6μg·h-1·mgcat-1 | [ |
a-Au/CeOx-RGO | HCl(pH=1) | -0.2 | 10.10 | 8.3μg·h-1·mgcat-1 | [ |
Pd0.2Cu0.8/rGO | 0.1mol·L-1 KOH | 0 | 约4.3 | [ | |
-0.2 | 2.80μg·h-1·mgcat-1 | ||||
Ir-Te | 1.0mol·L-1 KOH | -0.2 | 15.3 | 51.1μg·h-1·mgcat-1 | [ |
催化剂 | 电解液 | 电位/VRHE | 法拉第效率/% | 氨产率 | 参考文献 |
---|---|---|---|---|---|
Au THH NR | 0.1mol·L-1 KOH | -0.2 | 4 | 1.648μg·h-1·cm-2 | [ |
Nb2O5 | 0.1mol·L-1 HCl | -0.55 | 9.26 | 43.6μg·h-1·mgcat-1 | [ |
a-Au/CeOx-RGO | HCl(pH=1) | -0.2 | 10.10 | 8.3μg·h-1·mgcat-1 | [ |
Pd0.2Cu0.8/rGO | 0.1mol·L-1 KOH | 0 | 约4.3 | [ | |
-0.2 | 2.80μg·h-1·mgcat-1 | ||||
Ir-Te | 1.0mol·L-1 KOH | -0.2 | 15.3 | 51.1μg·h-1·mgcat-1 | [ |
催化剂 | 电解液 | 电位/VRHE | 法拉第效率/% | 氨产率 | 参考文献 |
---|---|---|---|---|---|
Aux/Ni | 0.05mol·L-1 H2SO4 | -0.14 | 67.8 | 7.4μg·h-1·mgcat-1 | [ |
Pd3Cu1 | 1mol·L-1 KOH | -0.05 | 1.56 | [ | |
-0.25 | 39.9μg·h-1·mgcat-1 | ||||
Fe-W18O49 | 0.25mol·L-1 LiClO4 | -0.15 | 20 | 24.7μg·h-1·mgcat-1 | [ |
Fe-Ni2P | 0.1mol·L-1 HCl | -0.3 | 7.92 | 88.51μg·h-1·mgcat-1 | [ |
Fe-CeO2 | 0.5mol·L-1 LiClO4 | -0.4 | 14.7 | [ | |
-0.5 | 26.2μg·h-1·mgcat-1 | ||||
Au-TiO2 | 0.1mol·L-1 HCl | -0.2 | 8.11 | 21.4μg·h-1·mgcat-1 | [ |
Fe-TiO2 | 0.5mol·L-1 LiClO4 | -0.4 | 25.6 | 25.47μg·h-1·mgcat-1 | [ |
V-TiO2 | 0.5mol·L-1 LiClO4 | -0.4 | 15.3 | [ | |
-0.5 | 17.73μg·h-1·mgcat-1 | ||||
B-TiO2 | 0.1mol·L-1 Na2SO4 | -0.8 | 3.4 | 14.4μgμg·h-1·mgcat-1 | [ |
C-TiO2 | 0.1mol·L-1 Na2SO4 | -0.7 | 1.84 | 16.22μg·h-1·mgcat-1 | [ |
C-TixOy/C | 0.1mol·L-1 LiClO4 | -0.4 | 17.8 | 14.8μg·h-1·mgcat-1 | [ |
np-PdH0.43 | 0.1mol·L-1 PBS | -0.15 | 43.6 | 20.4μg·h-1·mgcat-1 | [ |
MXene/SSM | 0.01mol·L-1 HCl | -0.1 | 4.62 | 4.72μg·h-1·cm-2 | [ |
Ti3C2Tx(T=F,OH) | 0.1mol·L-1 HCl | -0.4 | 9.3 | 20.4μg·h-1·mgcat-1 | [ |
TiO2/Ti3C2Tx | 0.1mol·L-1 HCl | -0.45 | 2.8 | [ | |
-0.55 | 32.17μg·h-1·mgcat-1 | ||||
Co3O4@NC | 0.05mol·L-1 H2SO4 | -0.2 | 8.5 | 42.58μg·h-1·mgcat-1 | [ |
TiO2/Ti | 0.1mol·L-1 Na2SO4 | -0.6 | 3.34 | [ | |
-0.7 | 2.5 | 5.61μg·h-1·cm-2 | |||
TiO2(Vo)_800 | 0.1mol·L-1 HCl | -0.12 | 6.5 | 3μg·h-1·mgcat-1 | [ |
d-TiO2/Ti | 0.1mol·L-1 HCl | -0.15 | 9.17 | 7.59μg·h-1·cm-2 | [ |
Ti3+-TiO2-x/TM | 0.1mol·L-1 Na2SO4 | -0.55 | 14.62 | 2.15μg·h-1·cm-2 | [ |
OV-TiO2-400 | 0.005mol·L-1 H2SO4 | -0.7 | 5.3 | [ | |
-0.8 | 35.6μg·h-1·mgcat-1 | ||||
0.57Mn3O4/b-TiO2 | 0.1mol·L-1 KOH | -0.35 | 15 | [ | |
-0.45 | 9.85μg·h-1·cm-2 | ||||
0.57SnO2/b-TiO2 | -0.45 | 21.3 | 13.4μg·h-1·cm-2 | ||
DR MoS2 | 0.1mol·L-1 Na2SO4 | -0.4 | 8.34 | 29.28μg·h-1·mgcat-1 | [ |
Co-doped MoS2-x | 0.01mol·L-1 H2SO4 | -0.3 | 10 | 10.71μg·h-1·mgcat-1 | [ |
VN/TM | 0.1mol·L-1 HCl | -0.5 | 2.25 | 5.14μg·h-1·cm-2 | [ |
W2N3 | 0.1mol·L-1 KOH | -0.2 | 11.67 | 11.66μg·h-1·mgcat-1 | [ |
MV-MoN@NC | 0.1mol·L-1 HCl | -0.2 | 6.9 | 76.9μg·h-1·mgcat-1 | [ |
催化剂 | 电解液 | 电位/VRHE | 法拉第效率/% | 氨产率 | 参考文献 |
---|---|---|---|---|---|
Aux/Ni | 0.05mol·L-1 H2SO4 | -0.14 | 67.8 | 7.4μg·h-1·mgcat-1 | [ |
Pd3Cu1 | 1mol·L-1 KOH | -0.05 | 1.56 | [ | |
-0.25 | 39.9μg·h-1·mgcat-1 | ||||
Fe-W18O49 | 0.25mol·L-1 LiClO4 | -0.15 | 20 | 24.7μg·h-1·mgcat-1 | [ |
Fe-Ni2P | 0.1mol·L-1 HCl | -0.3 | 7.92 | 88.51μg·h-1·mgcat-1 | [ |
Fe-CeO2 | 0.5mol·L-1 LiClO4 | -0.4 | 14.7 | [ | |
-0.5 | 26.2μg·h-1·mgcat-1 | ||||
Au-TiO2 | 0.1mol·L-1 HCl | -0.2 | 8.11 | 21.4μg·h-1·mgcat-1 | [ |
Fe-TiO2 | 0.5mol·L-1 LiClO4 | -0.4 | 25.6 | 25.47μg·h-1·mgcat-1 | [ |
V-TiO2 | 0.5mol·L-1 LiClO4 | -0.4 | 15.3 | [ | |
-0.5 | 17.73μg·h-1·mgcat-1 | ||||
B-TiO2 | 0.1mol·L-1 Na2SO4 | -0.8 | 3.4 | 14.4μgμg·h-1·mgcat-1 | [ |
C-TiO2 | 0.1mol·L-1 Na2SO4 | -0.7 | 1.84 | 16.22μg·h-1·mgcat-1 | [ |
C-TixOy/C | 0.1mol·L-1 LiClO4 | -0.4 | 17.8 | 14.8μg·h-1·mgcat-1 | [ |
np-PdH0.43 | 0.1mol·L-1 PBS | -0.15 | 43.6 | 20.4μg·h-1·mgcat-1 | [ |
MXene/SSM | 0.01mol·L-1 HCl | -0.1 | 4.62 | 4.72μg·h-1·cm-2 | [ |
Ti3C2Tx(T=F,OH) | 0.1mol·L-1 HCl | -0.4 | 9.3 | 20.4μg·h-1·mgcat-1 | [ |
TiO2/Ti3C2Tx | 0.1mol·L-1 HCl | -0.45 | 2.8 | [ | |
-0.55 | 32.17μg·h-1·mgcat-1 | ||||
Co3O4@NC | 0.05mol·L-1 H2SO4 | -0.2 | 8.5 | 42.58μg·h-1·mgcat-1 | [ |
TiO2/Ti | 0.1mol·L-1 Na2SO4 | -0.6 | 3.34 | [ | |
-0.7 | 2.5 | 5.61μg·h-1·cm-2 | |||
TiO2(Vo)_800 | 0.1mol·L-1 HCl | -0.12 | 6.5 | 3μg·h-1·mgcat-1 | [ |
d-TiO2/Ti | 0.1mol·L-1 HCl | -0.15 | 9.17 | 7.59μg·h-1·cm-2 | [ |
Ti3+-TiO2-x/TM | 0.1mol·L-1 Na2SO4 | -0.55 | 14.62 | 2.15μg·h-1·cm-2 | [ |
OV-TiO2-400 | 0.005mol·L-1 H2SO4 | -0.7 | 5.3 | [ | |
-0.8 | 35.6μg·h-1·mgcat-1 | ||||
0.57Mn3O4/b-TiO2 | 0.1mol·L-1 KOH | -0.35 | 15 | [ | |
-0.45 | 9.85μg·h-1·cm-2 | ||||
0.57SnO2/b-TiO2 | -0.45 | 21.3 | 13.4μg·h-1·cm-2 | ||
DR MoS2 | 0.1mol·L-1 Na2SO4 | -0.4 | 8.34 | 29.28μg·h-1·mgcat-1 | [ |
Co-doped MoS2-x | 0.01mol·L-1 H2SO4 | -0.3 | 10 | 10.71μg·h-1·mgcat-1 | [ |
VN/TM | 0.1mol·L-1 HCl | -0.5 | 2.25 | 5.14μg·h-1·cm-2 | [ |
W2N3 | 0.1mol·L-1 KOH | -0.2 | 11.67 | 11.66μg·h-1·mgcat-1 | [ |
MV-MoN@NC | 0.1mol·L-1 HCl | -0.2 | 6.9 | 76.9μg·h-1·mgcat-1 | [ |
催化剂 | 电解液 | 电位/VRHE | 法拉第效率/% | 氨产率 | 参考文献 |
---|---|---|---|---|---|
FeSx/Fe | 0.1mol·L-1 KOH | -0.3 | 17.6 | 25.28μg·h-1·cm-2 | [ |
Mo-FeS2 | 0.1mol·L-1 KOH | -0.2 | 14.41 | 26.15μg·h-1·mg-2 | [ |
MoFeC | 0.1mol·L-1 Li2SO4 | 0.05 | 43.6 | [ | |
-0.05 | 1.23μg·h-1·mgcat-1 |
催化剂 | 电解液 | 电位/VRHE | 法拉第效率/% | 氨产率 | 参考文献 |
---|---|---|---|---|---|
FeSx/Fe | 0.1mol·L-1 KOH | -0.3 | 17.6 | 25.28μg·h-1·cm-2 | [ |
Mo-FeS2 | 0.1mol·L-1 KOH | -0.2 | 14.41 | 26.15μg·h-1·mg-2 | [ |
MoFeC | 0.1mol·L-1 Li2SO4 | 0.05 | 43.6 | [ | |
-0.05 | 1.23μg·h-1·mgcat-1 |
1 | ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10): 636-639. |
2 | PENG Ming, QIAO Yijin, LUO Min, et al. Bioinspired Fe3C@C as highly efficient electrocatalyst for nitrogen reduction reaction under ambient conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40062-40068. |
3 | SMIL V. Detonator of the population explosion[J]. Nature, 1999, 400(6743): 415-415. |
4 | ZAMFIRESCU C, DINCER I. Using ammonia as a sustainable fuel[J]. Journal of Power Sources, 2008, 185(1): 459-465. |
5 | GIDDEY S, BADWAL S P S, KULKARNI A. Review of electrochemical ammonia production technologies and materials[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14576-14594. |
6 | SCHLÖGL R. Catalytic synthesis of ammonia—A “never-ending story”?[J]. Angewandte Chemie: International Edition, 2003, 42(18): 2004-2008. |
7 | GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. |
8 | WANG Lu, XIA Meikun, WANG Hong, et al. Greening ammonia toward the solar ammonia refinery[J]. Joule, 2018, 2(6): 1055-1074. |
9 | LI Sijia, BAO Di, SHI Miaomiao, et al. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions[J]. Advanced Materials, 2017, 29(33): 1700001. |
10 | GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70: 153-226. |
11 | BAO Di, ZHANG Qi, MENG Fanlu, et al. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle[J]. Advanced Materials, 2017, 29(3): 1604799. |
12 | CHEN Jingguang G, CROOKS R M, SEEFELDT L C, et al. Beyond fossil fuel-driven nitrogen transformations[J]. Science, 2018, 360(6391): eaar6611. |
13 | BROWN K A, HARRIS D F, WILKER M B, et al. Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid[J]. Science, 2016, 352(6284): 448-450. |
14 | SHI Run, ZHAO Yunxuan, WATERHOUSE G I N, et al. Defect engineering in photocatalytic nitrogen fixation[J]. ACS Catalysis, 2019, 9(11): 9739-9750. |
15 | ZHENG Biyuan, MA Chao, LI Dong, et al. Band alignment engineering in two-dimensional lateral heterostructures[J]. Journal of the American Chemical Society, 2018, 140(36): 11193-11197. |
16 | GUO Chunxian, RAN Jingrun, VASILEFF A, et al. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions[J]. Energy & Environmental Science, 2018, 11(1): 45-56. |
17 | CHEN Gaofeng, REN Shiyu, ZHANG Lili, et al. Nitrogen reduction reactions: advances in electrocatalytic N2 reduction—strategies to tackle the selectivity challenge[J]. Small Methods, 2019, 3(6): 1970016. |
18 | CUI Xiaoyang, TANG Cheng, ZHANG Qiang. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Advanced Energy Materials, 2018, 8(22): 1800369. |
19 | LIU Ruiquan, XU Gaochao. Comparison of electrochemical synthesis of ammonia by using sulfonated polysulfone and nation membrane with Sm1.5Sr0.5NiO4[J]. Chinese Journal of Chemistry, 2010, 28(2): 139-142. |
20 | KORDALI V, KYRIACOU G, LAMBROU C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell[J]. Chemical Communications, 2000(17): 1673-1674. |
21 | KUGLER K, LUHN M, SCHRAMM J A, et al. Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis[J]. Physical Chemistry Chemical Physics, 2015, 17(5): 3768-3782. |
22 | LIU Yanyan, HAN Miaomiao, XIONG Qizhong, et al. Dramatically enhanced ambient ammonia electrosynthesis performance by in-operando created Li-S interactions on MoS2 electrocatalyst[J]. Advanced Energy Materials, 2019, 9(14): 1803935. |
23 | ZHU Xiaojuan, LIU Zaichun, LIU Qin, et al. Efficient and durable N2 reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst[J]. Chemical Communications, 2018, 54(80): 11332-11335. |
24 | LI Laiquan, TANG Cheng, YAO Dazhi, et al. Electrochemical nitrogen reduction: identification and elimination of contamination in electrolyte[J]. ACS Energy Letters, 2019, 4: 2111-2116. |
25 | LIU Yanming, SU Yan, QUAN Xie, et al. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon[J]. ACS Catalysis, 2018, 8(2): 1186-1191. |
26 | LI Laiquan, TANG Cheng, XIA Bingquan, et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction[J]. ACS Catalysis, 2019, 9(4): 2902-2908. |
27 | LIN Yunxiang, YANG Li, JIANG Hongliang, et al. Sulfur atomically doped bismuth nanobelt driven by electrochemical self-reconstruction for boosted electrocatalysis[J]. The Journal of Physical Chemistry Letters, 2020, 11(5): 1746-1752. |
28 | LI Peipei, LIU Zaichun, WU Tongwei, et al. Ambient electrocatalytic N2 reduction to NH3 by metal fluorides[J]. Journal of Materials Chemistry A, 2019, 7(30): 17761-17765. |
29 | LI Yuanfang, LI Tingshuai, ZHU Xiaojuan, et al. DyF3: an efficient electrocatalyst for N2 fixation to NH3 under ambient conditions[J]. Chemistry: an Asian Journal, 2020, 15(4): 487-489. |
30 | MONTOYA J H, TSAI C, VOJVODIC A, et al. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations[J]. ChemSusChem, 2015, 8(13): 2180-2186. |
31 | HÖSKULDSSON Á B, ABGHOUI Y, GUNNARSDÓTTIR A B, et al. Computational screening of rutile oxides for electrochemical ammonia formation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10327-10333. |
32 | ABGHOUI Y, GARDEN A L, HLYNSSON V F, et al. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design[J]. Physical Chemistry Chemical Physics, 2015, 17(7): 4909-4918. |
33 | TANG Cheng, QIAO Shizhang. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully[J]. Chemical Society Reviews, 2019, 48: 3166-3180. |
34 | Xingshuai LYU, WEI Wei, LI Fengping, et al. Metal-free B@g-CN: visible/infrared light-driven single atom photocatalyst enables spontaneous dinitrogen reduction to ammonia[J]. Nano Letters, 2019, 19(9): 6391-6399. |
35 | MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8): 17033. |
36 | LING Chongyi, ZHANG Yehui, LI Qiang, et al. New mechanism for N2 reduction: the essential role of surface hydrogenation[J]. Journal of the American Chemical Society, 2019, 141(45): 18264-18270. |
37 | ABGHOUI Y, SKÚLASON E. Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group Ⅲ-Ⅶtransition metal mononitrides[J]. Catalysis Today, 2017, 286: 78-84. |
38 | WAN Yuchi, XU Jichu, Ruitao LÜ. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions[J]. Materials Today, 2019, 27: 69-90. |
39 | SKULASON E, BLIGAARD T, GUDMUNDSDOTTIR S, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Physical Chemistry Chemical Physics, 2012, 14(3): 1235-1245. |
40 | YAO Yao, WANG Haijiang, YUAN Xiaozi, et al. Electrochemical nitrogen reduction reaction on ruthenium[J]. ACS Energy Letters, 2019, 4(6): 1336-1341. |
41 | ZHAO Runbo, LIU Chuangwei, ZHANG Xiaoxue, et al. An ultrasmall Ru2P nanoparticles-reduced graphene oxide hybrid: an efficient electrocatalyst for NH3 synthesis under ambient conditions[J]. Journal of Materials Chemistry A, 2020, 8(1): 77-81. |
42 | SHI Yun, YANG Yong, LI Yongwang, et al. Mechanisms of Mo2C(101)-catalyzed furfural selective hydrodeoxygenation to 2-methylfuran from computation[J]. ACS Catalysis, 2016, 6(10): 6790-6803. |
43 | CHENG Hui, DING Liangxin, CHEN Gaofeng, et al. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions[J]. Advanced Materials, 2018, 30(46): 1803694. |
44 | HUI Lan, XUE Yurui, YU Huidi, et al. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst[J]. Journal of the American Chemical Society, 2019, 141(27): 10677-10683. |
45 | LI Jie, CHEN Shang, QUAN Fengjiao, et al. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions[J]. Chem, 2020, 6(4): 885-901. |
46 | NAZEMI M, PANIKKANVALAPPIL S R, EL-SAYED M A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages[J]. Nano Energy, 2018, 49: 316-323. |
47 | LIU Huimin, HAN Shuhe, ZHAO Yue, et al. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction[J]. Journal of Materials Chemistry A, 2018, 6(7): 3211-3217. |
48 | ZHANG Ya, QIU Weibin, MA Yongjun, et al. High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions[J]. ACS Catalysis, 2018, 8(9): 8540-8544. |
49 | CHOI Changhyeok, BACK Seoin, KIM Na Young, et al. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline[J]. ACS Catalysis, 2018, 8(8): 7517-7525. |
50 | YANDULOV D V, SCHROCK R R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center[J]. Science, 2003, 301(5629): 76-78. |
51 | HAN Lili, LIU Xijun, CHEN Jinping, et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation[J]. Angewandte Chemie: International Edition, 2019, 58(8): 2321-2325. |
52 | ZANG Wenjie, YANG Tong, ZOU Haiyuan, et al. Copper single atoms anchored in porous nitrogen-doped carbon as efficient pH-universal catalysts for the nitrogen reduction reaction[J]. ACS Catalysis, 2019, 9(11): 10166-10173. |
53 | GENG Zhigang, LIU Yan, KONG Xiangdong, et al. Achieving a record-high yield rate of 120.9·mgcat-1·h-1 for N2 electrochemical reduction over Ru single-atom catalysts[J]. Advanced Materials, 2018, 30(40): 1803498. |
54 | SATO S, TAKAHASHI R, KOBUNE M, et al. Basic properties of rare earth oxides[J]. Applied Catalysis A: General, 2009, 356(1): 57-63. |
55 | LUO Yun, HABRIOUX A, CALVILLO L, et al. Thermally induced strains on the catalytic activity and stability of Pt-M2O3/C (M=Y or Gd) catalysts towards oxygen reduction reaction[J]. ChemCatChem, 2015, 7(10): 1573-1582. |
56 | LIU Jieyuan, KONG Xue, ZHENG Lirong, et al. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction[J]. ACS Nano, 2020, 14(1): 1093-1101. |
57 | WANG Mengfan, LIU Sisi, QIAN Tao, et al. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential[J]. Nature Communications, 2019, 10(1): 341. |
58 | JEONG Hojin, SHIN Sangyong, Hyunjoo LEE. Heterogeneous atomic catalysts overcoming the limitations of single-atom catalysts[J]. ACS Nano, 2020, 14(11): 14355-14374. |
59 | SHI Miaomiao, BAO Di, WULAN Bari, et al. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions[J]. Advanced Materials, 2017, 29(17): 1606550. |
60 | LIU Huiling, NOSHEEN F, WANG Xun. Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property[J]. Chemical Society Reviews, 2015, 44(10): 3056-3078. |
61 | JIANG Yaqi, SU Jingyun, YANG Yanan, et al. A facile surfactant-free synthesis of Rh flower-like nanostructures constructed from ultrathin nanosheets and their enhanced catalytic properties[J]. Nano Research, 2016, 9(3): 849-856. |
62 | LI Chengbo, MOU Shiyong, ZHU Xiaojuan, et al. Dendritic Cu: a high-efficiency electrocatalyst for N2 fixation to NH3 under ambient conditions[J]. Chemical Communications, 2019, 55(96): 14474-14477. |
63 | REN Xiang, ZHAO Xiang, WEI Qin, et al. High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod[J]. ACS Central Science, 2019, 5(1): 116-121. |
64 | DU Huitong, GUO Xiaoxi, KONG Rongmei, et al. Cr2O3 nanofiber: a high-performance electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions[J]. Chemical Communications, 2018, 54(91): 12848-12851. |
65 | STRASSER P, KOH S, ANNIYEV T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J]. Nature Chemistry, 2010, 2(6): 454-460. |
66 | YANG Yijie, WANG Shuqi, WEN Haoming, et al. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation[J]. Angewandte Chemie: International Edition, 2019, 58(43): 15362-15366. |
67 | ZHANG Jin, JI Yujin, WANG Pengtang, et al. Adsorbing and activating N2 on heterogeneous Au-Fe3O4 nanoparticles for N2 fixation[J]. Advanced Functional Materials, 2019, 30(4): 1906579. |
68 | LIN Yunxiao, ZHANG Shinan, XUE Zhonghua, et al. Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles[J]. Nature Communications, 2019, 10(1): 4380. |
69 | LIU Yitao, CHEN Xingxing, YU Jianyong, et al. Carbon-nanoplated CoS@TiO2 nanofibrous membrane: an interface-engineered heterojunction for high-efficiency electrocatalytic nitrogen reduction[J]. Angewandte Chemie: International Edition, 2019, 58(52): 18903-18907. |
70 | LUO Shijian, LI Xiaoman, GAO Wanguo, et al. An MOF-derived C@NiO@Ni electrocatalyst for N2 conversion to NH3 in alkaline electrolytes[J]. Sustainable Energy & Fuels, 2020, 4(1): 164-170. |
71 | CHEN Pengzuo, ZHANG Nan, WANG Sibo, et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6635-6640. |
72 | ZHOU Fengling, AZOFRA L M, ALI M, et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids[J]. Energy & Environmental Science, 2017, 10(12): 2516-2520. |
73 | FURUYA N, YOSHIBA H. Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by Fe-phthalocyanine[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 263(1): 171-174. |
74 | LIU Yitao, TANG Lu, DAI Jin, et al. Promoted electrocatalytic nitrogen fixation in Fe-Ni layered double hydroxide arrays coupled to carbon nanofibers: the role of phosphorus doping[J]. Angewandte Chemie: International Edition, 2020, 59(32): 13623-13627. |
75 | ZHOU Kebin, LI Yadong. Catalysis based on nanocrystals with well-defined facets[J]. Angewandte Chemie: International Edition, 2012, 51(3): 602-613. |
76 | WANG Juan, HUANG Bolong, JI Yujin, et al. A general strategy to glassy M-Te (M = Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation[J]. Advanced Materials, 2020, 32(11): 1907112. |
77 | ROBERTS F S, KUHL K P, NILSSON A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts[J]. Angewandte Chemie: International Edition, 2015, 54(17): 5179-5182. |
78 | WANG Tao, TIAN Xinxin, YANG Yong, et al. Coverage-dependent N2 adsorption and its modification of iron surfaces structures[J]. The Journal of Physical Chemistry C, 2016, 120(5): 2846-2854. |
79 | YANG Dashuai, CHEN Ting, WANG Zhijiang. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm[J]. Journal of Materials Chemistry A, 2017, 5(36): 18967-18971. |
80 | HAN Jingrui, LIU Zaichun, MA Yongjun, et al. Ambient N2 fixation to NH3 at ambient conditions: using Nb2O5 nanofiber as a high-performance electrocatalyst[J]. Nano Energy, 2018, 52: 264-270. |
81 | Chade LÜ, YAN Chunshuang, CHEN Gang, et al. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions[J]. Angewandte Chemie: International Edition, 2018, 57(21): 6073-6076. |
82 | SHI Miaomiao, BAO Di, LI Sijia, et al. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution[J]. Advanced Energy Materials, 2018, 8(21): 1800124. |
83 | XIE Chao, YAN Dafeng, LI Hao, et al. Defect chemistry in heterogeneous catalysis: recognition, understanding and utilization[J]. ACS Catalysis, 2020, 10(19): 11082-11098 |
84 | XUE Zhonghua, ZHANG Shinan, LIN Yunxiao, et al. Electrochemical reduction of N2 into NH3 by donor-acceptor couples of Ni and Au nanoparticles with a 67.8% Faradaic efficiency[J]. Journal of the American Chemical Society, 2019, 141(38): 14976-14980. |
85 | XU Wence, FAN Guilan, CHEN Jialiang, et al. Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions[J]. Angewandte Chemie: International Edition, 2019, 59(9): 3511-3516. |
86 | LUO Yaru, CHEN Gaofeng, DING Li, et al. Efficient electrocatalytic N2 fixation with MXene under ambient conditions[J]. Joule, 2019, 3(1): 279-289. |
87 | ZHANG Jing, TIAN Xiaoyin, LIU Mingjie, et al. Cobalt-modulated molybdenum-dinitrogen interaction in MoS2 for catalyzing ammonia synthesis[J]. Journal of the American Chemical Society, 2019, 141(49): 19269-19275. |
88 | WANG Jun, YU Liang, HU Lin, et al. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential[J]. Nature Communications, 2018, 9(1): 1795. |
89 | PANG Fangjie, WANG Zhifeng, ZHANG Kai, et al. Bimodal nanoporous Pd3Cu1 alloy with restrained hydrogen evolution for stable and high yield electrochemical nitrogen reduction[J]. Nano Energy, 2019, 58: 834-841. |
90 | TONG Yueyu, GUO Haipeng, LIU Daolan, et al. Vacancy engineering of Fe-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction[J]. Angewandte Chemie: International Edition, 2020, 59(19): 7356-7361. |
91 | GUO Chengying, LIU Xuejing, GAO Lingfeng, et al. Fe-doped Ni2P nanosheets with porous structure for electroreduction of nitrogen to ammonia under ambient conditions[J]. Applied Catalysis B: Environmental, 2019, 263: 118296. |
92 | CHU Ke, CHENG Yonghua, LI Qingqing, et al. Fe-doping induced morphological changes, oxygen vacancies and Ce3+-Ce3+ pairs in CeO2 for promoting electrocatalytic nitrogen fixation[J]. Journal of Materials Chemistry A, 2020, 8(12): 5865-5873 |
93 | WU Tongwei, ZHU Xiaojuan, XING Zhe, et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticle by iron doping[J]. Angewandte Chemie: International Edition, 2019, 58(51): 18449-18453. |
94 | WU Tongwei, KONG Wenhan, ZHANG Ya, et al. Greatly enhanced electrocatalytic N2 reduction on TiO2via V doping[J]. Small Methods, 2019, 3(11): 1900356. |
95 | WANG Yuan, JIA Kun, PAN Qi, et al. Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(1): 117-122. |
96 | JIA Kun, WANG Yuan, PAN Qi, et al. Enabling the electrocatalytic fixation of N2 to NH3 by C-doped TiO2 nanoparticles under ambient conditions[J]. Nanoscale Advances, 2019, 1(3): 961-964. |
97 | QIN Qing, ZHAO Yun, SCHMALLEGGER M, et al. Enhanced electrocatalytic N2 reduction via partial anion substitution in titanium oxide-carbon composites[J]. Angewandte Chemie: International Edition, 2019, 58(37): 13101-13106. |
98 | SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137. |
99 | ZHAO Jinxiu, ZHANG Lei, XIE Xiaoying, et al. Ti3C2Tx (T= F, OH) MXene nanosheets: conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3[J]. Journal of Materials Chemistry A, 2018, 6(47): 24031-24035. |
100 | FANG Yanfeng, LIU Zaichun, HAN Jingrui, et al. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2in situ grown on Ti3C2Tx MXene[J]. Advanced Energy Materials, 2019, 9(16): 1803406. |
101 | CHEN Xinrui, GUO Yitian, DU Xinchuan, et al. Atomic structure modification for electrochemical nitrogen reduction to ammonia[J]. Advanced Energy Materials, 2019, 10(3): 1903172. |
102 | LUO Shijian, LI Xiaoman, ZHANG Baohai, et al. MOF-derived Co3O4@NC with core-shell structures for N2 electrochemical reduction under ambient conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26891-26897. |
103 | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
104 | ZHANG Rong, REN Xiang, SHI Xifeng, et al. Enabling effective electrocatalytic N2 conversion to NH3 by the TiO2 nanosheets array under ambient conditions[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28251-28255. |
105 | HAN Zishan, CHOI Changhyeok, HONG Song, et al. Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction[J]. Applied Catalysis B: Environmental, 2019, 257: 117896. |
106 | YANG Li, WU Tongwei, ZHANG Rong, et al. Insights into defective TiO2 in electrocatalytic N2 reduction: combining theoretical and experimental studies[J]. Nanoscale, 2019, 11(4): 1555-1562. |
107 | LI Bingyue, ZHU Xiaojuan, WANG Jianwei, et al. Ti3+ self-doped TiO2-x nanowires for efficient electrocatalytic N2 reduction to NH3[J]. Chemical Communications, 2019, 56(7): 1074-1077. |
108 | FANG Caihong, BI Ting, XU Xiaoxiao, et al. Oxygen vacancy-enhanced electrocatalytic performances of TiO2 nanosheets toward N2 reduction reaction[J]. Advanced Materials Interfaces, 2019, 6(21): 1901034. |
109 | ZHANG Jianfang, TIAN Yujing, ZHANG Tianyu, et al. Confinement of intermediates in blue TiO2 nanotube arrays boosts reaction rate of nitrogen electrocatalysis[J]. ChemCatChem, 2020, 12(10): 2760-2767. |
110 | GAO Minrui, CHAN M K Y, SUN Yugang. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production[J]. Nature Communications, 2015, 6(1): 7493. |
111 | LI Xianghong, LI Tingshuai, MA Yongjun, et al. Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower[J]. Advanced Energy Materials, 2018, 8(30): 1801357. |
112 | ZHANG Rong, ZHANG Ya, REN Xiang, et al. High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9545-9549. |
113 | JIN Huanyu, LI Laiquan, LIU Xin, et al. Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction[J]. Advanced Materials, 2019, 31(32): 1902709. |
114 | YANG Xiaohui, LING Faling, SU Jinfeng, et al. Insights into the role of cation vacancy for significantly enhanced electrochemical nitrogen reduction[J]. Applied Catalysis B: Environmental, 2019, 264: 118477. |
115 | HU Bo, HU Maowei, SEEFELDT L, et al. Electrochemical dinitrogen reduction to ammonia by Mo2N: catalysis or decomposition?[J]. ACS Energy Letters, 2019, 4(5): 1053-1054. |
116 | XIONG Wei, GUO Zheng, ZHAO Shijun, et al. Facile, cost-effective plasma synthesis of self-supportive FeSx on Fe foam for efficient electrochemical reduction of N2 under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7(34): 19977-19983. |
117 | SINGH A R, ROHR B A, SCHWALBE J A, et al. Electrochemical ammonia synthesis——The selectivity challenge[J]. ACS Catalysis, 2017, 7(1): 706-709. |
118 | MACLEOD K C, HOLLAND P L. Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron[J]. Nature Chemistry, 2013, 5(7): 559-565. |
119 | WANG Haibin, WANG Jiaqi, ZHANG Rui, et al. Bionic design of a Mo(Ⅳ)-doped FeS2 catalyst for electroreduction of dinitrogen to ammonia[J]. ACS Catalysis, 2020, 10(9): 4914-4921. |
120 | QIN Binhao, LI Yuhang, ZHANG Qiao, et al. Understanding of nitrogen fixation electro catalyzed by molybdenum-iron carbide through the experiment and theory[J]. Nano Energy, 2020, 68: 104374. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[6] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[7] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[8] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[9] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[10] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[11] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[12] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[13] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[14] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[15] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |