Chemical Industry and Engineering Progress

   

Research progress in electrocatalytic ammonia synthesis

  

  • Received:2020-12-01 Revised:2021-03-01 Online:2021-03-02

电催化合成氨研究进展

范文龙1,李林哲1,薛志伟1,孟秀霞2,张津津3,于方永1,杨乃涛1   

  1. 1. 山东理工大学化学化工学院
    2. 上海交通大学,山东理工大学
    3. 山东理工大学
  • 通讯作者: 杨乃涛
  • 基金资助:
    MXene负载非贵金属单原子催化剂构筑及陶瓷中空纤维膜反应器N2电催化还原合成氨机理;陶瓷中空纤维/MXene复合膜制备及丙烷制丙烯和氢气的催化-膜分离机 制研究;垂直阵列MXene/rGO复合膜构建及氢渗透机制研究

Abstract: Electrocatalytic nitrogen reduction to synthesize ammonia under normal pressure exhibits low energy consumption and low CO2 emissions, which is one of the most promising alternatives. In the electrocatalytic ammonia synthesizers, the electrolyte materials are mainly classified into solid oxide electrolytes, molten salt electrolytes, polymer membrane electrolytes, and liquid electrolytes, according to their working principles and compositions. The operation temperature of these electrocatalytic ammonia synthesizers decreases little by little in the order listed above. In this article, the working principles of electrocatalytic ammonia synthesis, the materials of electrolytes and electrodes, the frontier theories of the Faraday efficiency and some application cases have been summarized. The current challenges have been pointed out such as the nitrogen electrocatalytic reduction, the insufficient proton conduction efficiency of the electrolyte, the low catalyst activity and stability, and the research trend of low temperature. The work has provided some theoretical supports and research directions for an in-depth exploration of the electrocatalytic ammonia synthesis process.

Key words: electrocatalytic, synthesis, ammonia, electrolytes, electrode catalyst, Faraday efficiency

摘要: 电催化氮还原合成氨在常压下进行,能克服高耗能、高CO2排放等问题,是最有希望替代传统方法的新型技术之一。用于电催化合成氨反应的电解质材料按照工作原理和组成可以分为固体氧化物电解质、熔融盐电解质、聚合物膜电解质以及液体电解质等,工作温度依次降低。本文从电解质出发,综述了电催化合成氨工作原理、电极材料、生产速率和法拉第效率等方面的前沿理论和应用案例,指出了目前电催化氮还原合成氨领域面临着合成氨速率和法拉第效率低、电解质的质子传导效率不足、催化剂活性及稳定性不良等问题以及低温化的研究趋势,为深入探索电催化合成氨新方法提供理论支持和方向引导。

关键词: 电催化, 合成, 氨, 电解质, 电极催化剂, 法拉第效率

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd