Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 3444-3454.DOI: 10.16085/j.issn.1000-6613.2020-1438
• Resources and environmental engineering • Previous Articles Next Articles
HAN Wanling1,2,3(), QIAN Yongxing2,3,4, ZHANG Huining2,3,4(), CHEN Jiwei5, MA Jianqing2,3,4, ZHANG Kefeng2,3,4
Received:
2020-07-24
Revised:
2020-12-18
Online:
2021-06-22
Published:
2021-06-06
Contact:
ZHANG Huining
韩婉玲1,2,3(), 钱勇兴2,3,4, 张会宁2,3,4(), 陈吉炜5, 马建青2,3,4, 张科锋2,3,4
通讯作者:
张会宁
作者简介:
韩婉玲(1995—),女,硕士研究生,研究方向为水污染控制。E-mail:基金资助:
CLC Number:
HAN Wanling, QIAN Yongxing, ZHANG Huining, CHEN Jiwei, MA Jianqing, ZHANG Kefeng. Review on removal methods of short-chain chlorinated paraffins in environment[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3444-3454.
韩婉玲, 钱勇兴, 张会宁, 陈吉炜, 马建青, 张科锋. 环境中短链氯化石蜡去除方法的研究进展[J]. 化工进展, 2021, 40(6): 3444-3454.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1438
污染物种类 | 吸附质 | 吸附剂 | 吸附剂 用量 | 吸附平衡 时间 | 去除效果 | 吸附动力学 | 吸附机理 |
---|---|---|---|---|---|---|---|
抗生素 | 四环素[ | 硝化颗粒污泥 | 30mg·L-1 | 4h | 7.30mg·(gSS)-1 (悬浮固形物) | 拟二级动力学 | 表面吸附和颗粒内扩散 |
磺胺甲唑[ | 活性污泥 | 2.56g·L-1 | 1h | 92.1% | 零级动力学 | — | |
多溴二苯醚 | 十溴二苯醚[ | 好氧颗粒污泥 | 8g SS·L-1 | 12h | >95.0% | 修正的拟一级动力学 | 化学吸附 |
药品及个人 护理用品 | 甲胺呋硫[ | 混合的驯化异养菌 | — | 5h | 96% | — | 静电相互作用 |
扑热息痛和水杨酸[ | 活性污泥 | — | 24h | — | 二级动力学 | 表面吸附 |
污染物种类 | 吸附质 | 吸附剂 | 吸附剂 用量 | 吸附平衡 时间 | 去除效果 | 吸附动力学 | 吸附机理 |
---|---|---|---|---|---|---|---|
抗生素 | 四环素[ | 硝化颗粒污泥 | 30mg·L-1 | 4h | 7.30mg·(gSS)-1 (悬浮固形物) | 拟二级动力学 | 表面吸附和颗粒内扩散 |
磺胺甲唑[ | 活性污泥 | 2.56g·L-1 | 1h | 92.1% | 零级动力学 | — | |
多溴二苯醚 | 十溴二苯醚[ | 好氧颗粒污泥 | 8g SS·L-1 | 12h | >95.0% | 修正的拟一级动力学 | 化学吸附 |
药品及个人 护理用品 | 甲胺呋硫[ | 混合的驯化异养菌 | — | 5h | 96% | — | 静电相互作用 |
扑热息痛和水杨酸[ | 活性污泥 | — | 24h | — | 二级动力学 | 表面吸附 |
技术方法 | 影响因素 | 优点 | 缺点 | 反应途径/机制 | 反应产物 |
---|---|---|---|---|---|
一般物化去除法[ | SCCPs和催化剂投加量以及浓度、pH、温度、碳链长度和氯化度 | 工艺简单、去除污染物速率较快 | 污染处理费用较大、不适合大规模应用 | 还原脱氯 | 正构烷烃和正构烯烃、醇类或长链中间体 |
高级氧化法[ | 光照强度、SCCPs和催 化剂投加量以及浓度、pH、温度 | 耗时短、效率高、重现性好、容易处理、便于工程化应用 | 成本高、光催化剂较难再生、加工条件复杂、易生成有机副产物 | 光催化降解 | 烯烃和羰基化合物的中间体、H2O、CO2和HCl |
细菌降解法[ | 碳链长度和氯化度、pH、温度 | 经济成本低、操作简单、无二次污染 | 细菌降解周期较长 | 生物转化和脱氯降解 | 低氯同类物或正构烷烃 |
植物吸收法[ | 碳链长度和氯化度、pH、温度 | 成本低、环保 | 植物培养较慢、不适合大规模应用 | 脱卤和羟基化、在植物组织中脱氯和氯重排 | 低氯同类物C10H17Cl5、C10H16Cl6和其他C10H15Cl7 |
动物去除法[ | 碳链长度和氯化度、pH、温度 | 操作简单、成本低 | 受环境影响大、不好调控 | 氧化脱卤作用 | 脂肪酸 |
技术方法 | 影响因素 | 优点 | 缺点 | 反应途径/机制 | 反应产物 |
---|---|---|---|---|---|
一般物化去除法[ | SCCPs和催化剂投加量以及浓度、pH、温度、碳链长度和氯化度 | 工艺简单、去除污染物速率较快 | 污染处理费用较大、不适合大规模应用 | 还原脱氯 | 正构烷烃和正构烯烃、醇类或长链中间体 |
高级氧化法[ | 光照强度、SCCPs和催 化剂投加量以及浓度、pH、温度 | 耗时短、效率高、重现性好、容易处理、便于工程化应用 | 成本高、光催化剂较难再生、加工条件复杂、易生成有机副产物 | 光催化降解 | 烯烃和羰基化合物的中间体、H2O、CO2和HCl |
细菌降解法[ | 碳链长度和氯化度、pH、温度 | 经济成本低、操作简单、无二次污染 | 细菌降解周期较长 | 生物转化和脱氯降解 | 低氯同类物或正构烷烃 |
植物吸收法[ | 碳链长度和氯化度、pH、温度 | 成本低、环保 | 植物培养较慢、不适合大规模应用 | 脱卤和羟基化、在植物组织中脱氯和氯重排 | 低氯同类物C10H17Cl5、C10H16Cl6和其他C10H15Cl7 |
动物去除法[ | 碳链长度和氯化度、pH、温度 | 操作简单、成本低 | 受环境影响大、不好调控 | 氧化脱卤作用 | 脂肪酸 |
1 | FIEDLER H. Short-chain chlorinated paraffins: production, use and international regulations[M]. BOER J, Heidelberg: Springer Berlin Heidelberg, 2010: 1-40. |
2 | MOURIK L M VAN, GAUS C, LEONARDS P E G, et al. Chlorinated paraffins in the environment: a review on their production, fate, levels and trends between 2010 and 2015[J]. Chemosphere, 2016, 155: 415-428. |
3 | GLÜGE J, WANG Z Y, BOGDAL C, et al. Global production, use, and emission volumes of short-chain chlorinated paraffins–A minimum scenario[J]. Science of the Total Environment, 2016, 573: 1132-1146. |
4 | 吴红忠. 新形势下氯化石蜡生产的发展方向[J]. 氯碱工业, 2019, 55(10): 23-26. |
WU Hongzhong. The development direction of chlorinated paraffin production under the new situations[J]. Chlor-Alkali Industry, 2019, 55(10): 23-26. | |
5 | WU J, CAO D, GAO W, et al. The atmospheric transport and pattern of medium chain chlorinated paraffins at Shergyla Mountain on the Tibetan Plateau of China[J]. Environmental Pollution, 2019, 245: 46-52. |
6 | JIANG W, CHEN H, HUANG T, et al. Tagged sources of short-chain chlorinated paraffins in China’s marine environment and fish[J]. Chemosphere, 2019, 229: 358-365. |
7 | WANG K R, GAO L R, ZHU S, et al. Spatial distributions and homolog profiles of chlorinated nonane paraffins, and short and medium chain chlorinated paraffins in soils from Yunnan, China[J]. Chemosphere, 2020, 247: 125855. |
8 | XU C, ZHANG Q, GAO L, et al. Spatial distributions and transport implications of short- and medium-chain chlorinated paraffins in soils and sediments from an e-waste dismantling area in China[J]. Science of the Total Environment, 2019, 649: 821-828. |
9 | SUN R X, CHEN J M, SHAO H Y, et al. Bioaccumulation of short-chain chlorinated paraffins in chicken (Gallus domesticus): comparison to fish[J]. Journal of Hazardous Materials, 2020, 396: 122590. |
10 | JIANG W, HUANG T, MAO X X, et al. Gridded emission inventory of short-chain chlorinated paraffins and its validation in China[J]. Environmental Pollution, 2017, 220: 132-141. |
11 | 赵晗, 周辰, 周航, 等. “毒跑道”恐慌[N]. 财新周刊, 2016-06-27(25). |
ZHAO Han, ZHOU Chen, ZHOU Hang, et al. "Poisonous runway" panic[N]. Caixin Weekly, 2016-06-27(25). | |
12 | 张勇. 台湾食品塑化剂风波蔓延[N]. 洛阳日报, 2016-05-30(7). |
ZHANG Yong. Food plasticizer storm spreading in Taiwan[N]. Luoyang Daily, 2016-05-30(7). | |
13 | 李耳. 致命危机:酒鬼酒塑化剂超标260%[EB/OL]. 2012-11-19. . |
LI Er. Fatal crisis: alcoholic drinks with 260% excess plasticizer[EB/OL]. 2012-11-19. . | |
14 | XIN S Z, GAO W, WANG Y W, et al. Thermochemical emission and transformation of chlorinated paraffins in inert and oxidizing atmospheres[J]. Chemosphere, 2017, 185: 899-906. |
15 | 王亚韡, 王莹, 江桂斌. 短链氯化石蜡的分析方法、污染现状与毒性效应[J]. 化学进展, 2017, 29(9): 919-929. |
WANG Yawei, WANG Ying, JIANG Guibin. Analytical methods, environmental pollutions and toxicity of short chain chlorinated paraffins[J]. Progress in Chemistry, 2017, 29(9): 919-929. | |
16 | JIANG W, HUANG T, CHEN H, et al. Contamination of short-chain chlorinated paraffins to the biotic and abiotic environments in the Bohai Sea[J]. Environmental Pollution, 2018, 233: 114-124. |
17 | LABADIE P, BLASI C, LE MENACH K, et al. Evidence for the widespread occurrence of short- and medium-chain chlorinated paraffins in fish collected from the Rhône River basin (France)[J]. Chemosphere, 2019, 223: 232-239. |
18 | QIAO L, GAO L R, XIA D, et al. Short- and medium-chain chlorinated paraffins in sediments from the middle reaches of the Yangtze River: spatial distributions, source apportionment and risk assessment[J]. Science of the Total Environment, 2017, 575: 1177-1182. |
19 | MUIR D. Environmental levels and fate[M]. Heidelberg: Springer Berlin Heidelberg, 2010: 107-133. |
20 | TOMY G T, MUIR D C G, STERN G A, et al. Levels of C10-C13 polychloro-n-alkanes in marine mammals from the Arctic and the St. Lawrence River Estuary[J]. Environmental Science & Technology, 2000, 34(9): 1615-1619. |
21 | STRID A, BRUHN C, SVERKO E, et al. Brominated and chlorinated flame retardants in liver of Greenland shark (Somniosus microcephalus)[J]. Chemosphere, 2013, 91(2): 222-228. |
22 | RETH M, CIRIC A, CHRISTENSEN G N, et al. Short-and medium-chain chlorinated paraffins in biota from the European Arctic-differences in homologue group patterns[J]. Science of the Total Environment, 2006, 367(1): 252-260. |
23 | VORKAMP K, RIGÉT F F. A review of new and current-use contaminants in the Arctic environment: evidence of long-range transport and indications of bioaccumulation[J]. Chemosphere, 2014, 111: 379-395. |
24 | CASÀ M V, MOURIK L M VAN, WEIJS L, et al. First detection of short-chain chlorinated paraffins (SCCPs) in humpback whales (megaptera novaeangliae) foraging in Antarctic waters[J]. Environmental Pollution, 2019, 250: 953-959. |
25 | MA X D, ZHANG H J, ZHOU H Q, et al. Occurrence and gas/particle partitioning of short- and medium-chain chlorinated paraffins in the atmosphere of Fildes Peninsula of Antarctica[J]. Atmospheric Environment, 2014, 90: 10-15. |
26 | HUANG Y M, CHEN L G, JIANG G, et al. Bioaccumulation and biomagnification of short-chain chlorinated paraffins in marine organisms from the Pearl River Estuary, South China[J]. Science of the Total Environment, 2019, 671: 262-269. |
27 | LI Y L, HOU X W, YU M, et al. Dechlorination and chlorine rearrangement of 1,2,5,5,6,9,10-heptachlorodecane mediated by the whole pumpkin seedlings[J]. Environmental Pollution, 2017, 224: 524-531. |
28 | WANG R H, GAO L R, ZHENG M H, et al. Characterization of short- and medium-chain chlorinated paraffins in cereals and legumes from 19 Chinese provinces[J]. Chemosphere, 2019, 226: 282-289. |
29 | DONG S J, LI X M, SU X O, et al. Concentrations and congener group profiles of short- and medium-chain chlorinated paraffins in animal feed materials[J]. Science of the Total Environment, 2019, 647: 676-681. |
30 | LI H J, GAO S, YANG M L, et al. Dietary exposure and risk assessment of short-chain chlorinated paraffins in supermarket fresh products in Jinan, China[J]. Chemosphere, 2020, 244: 125393 |
31 | WANG R H, GAO L R, ZHENG M H, et al. Short- and medium-chain chlorinated paraffins in aquatic foods from 18 Chinese provinces: occurrence, spatial distributions, and risk assessment[J]. Science of the Total Environment, 2018, 615: 1199-1206. |
32 | XIA D, GAO L, ZHENG M, et al. Human exposure to short-and medium-chain chlorinated paraffins via mothers’ milk in Chinese urban population[J]. Environmental Science & Technology, 2017, 51(1): 608-615. |
33 | LI T, WAN Y, GAO S, et al. High-throughput determination and characterization of short-, medium-, and long-chain chlorinated paraffins in human blood[J]. Environmental Science & Technology, 2017, 51(6): 3346-3354. |
34 | XU J Z, GUO W J, WEI L H, et al. Validation of a HRGC-ECNI/LRMS method to monitor short-chain chlorinated paraffins in human plasma[J]. Journal of Environmental Sciences, 2019, 75: 289-295. |
35 | FEO M L, ELJARRAT E, BARCELÓ D, et al. Occurrence, fate and analysis of polychlorinated n-alkanes in the environment[J]. TrAC Trends in Analytical Chemistry, 2009, 28(6): 778-791. |
36 | GENG N, ZHANG H, ZHANG B, et al. Effects of short-chain chlorinated paraffins exposure on the viability and metabolism of human hepatoma HepG2 cells[J]. Environmental Science & Technology, 2015, 49(5): 3076-3083. |
37 | REN X Q, GENG N B, ZHANG H J, et al. Comparing the disrupting effects of short-, medium- and long-chain chlorinated paraffins on cell viability and metabolism[J]. Science of the Total Environment, 2019, 685: 297-307. |
38 | 朱志保, 周琴, 赵远. 短链氯化石蜡的研究进展[J]. 化工进展, 2015, 34(8): 3165-3172, 3187. |
ZHU Zhibao, ZHOU Qin, ZHAO Yuan. Research progress of short chain chlorinated paraffins[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3165-3172, 3187. | |
39 | DING Q Y, DING N, CHEN X F, et al. Chlorinated paraffins wrapping of carbon nanotubes: a theoretical investigation[J]. Applied Surface Science, 2018, 436: 277-282. |
40 | LIU H J, YU Y S, SHAO Q, et al. Porous polymeric resin for adsorbing low concentration of VOCs: unveiling adsorption mechanism and effect of VOCs’ molecular properties[J]. Separation and Purification Technology, 2019, 228: 115755. |
41 | PARK Y, AYOKO G A, FROST R L. Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media[J]. Journal of Colloid and Interface Science, 2011, 354(1): 292-305. |
42 | LAHANIATIS M R, COELHAN M, PARLAR H. Clean-up and quantification of short and medium chain polychlorinated n-alkanes in fish, fish oil and fish feed[J]. Organohalogen Compounds, 2000, 47: 276-279. |
43 | ZHANG Z Y, LU M, ZHANG Z Z, et al. Dechlorination of short chain chlorinated paraffins by nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2012, 243: 105-111. |
44 | ZHANG W L, GAO Y P, QIN Y X, et al. Photochemical degradation kinetics and mechanism of short-chain chlorinated paraffins in aqueous solution: a case of 1-chlorodecane[J]. Environmental Pollution, 2019, 247: 362-370. |
45 | BARIKI R, MAJHI D, DAS K, et al. Facile synthesis and photocatalytic efficacy of UiO-66/CdIn2S4 nanocomposites with flowerlike 3D-microspheres towards aqueous phase decontamination of triclosan and H2 evolution[J]. Applied Catalysis B: Environmental, 2020, 270:118882. |
46 | SUN F, QI H N, XIE Y R, et al. Flexible self-supporting bifunctional [TiO2/C]//[Bi2WO6/C] carbon-based Janus nanofiber heterojunction photocatalysts for efficient hydrogen evolution and degradation of organic pollutant[J]. Journal of Alloys and Compounds, 2020, 830: 154673. |
47 | ZHANG G H, ZHANG X Q, MENG Y, et al. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: a review[J]. Chemical Engineering Journal, 2020, 392: 123684. |
48 | KOH I O, THIEMANN W. Study of photochemical oxidation of standard chlorinated paraffins and identification of degradation products[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 139(2/3): 205-215. |
49 | EL-MORSI T M, BUDAKOWSKI W R, ABD-EL-AZIZ A S, et al. Photocatalytic degradation of 1,10-dichlorodecane in aqueous suspensions of TiO2: a reaction of adsorbed chlorinated alkane with surface hydroxyl radicals[J]. Environmental Science & Technology, 2000, 34(6): 1018-1022. |
50 | EL-MORSI T M, EMARA M M, BARY H M H ABD EL, et al. Homogeneous degradation of 1,2,9,10-tetrachlorodecane in aqueous solutions using hydrogen peroxide, iron and UV light[J]. Chemosphere, 2002, 47(3): 343-348. |
51 | FRIESEN K J, EL-MORSI T M, ABD-EL-AZIZ A S. Photochemical oxidation of short-chain polychlorinated n-alkane mixtures using H2O2/UV and the photo-Fenton reaction[J]. International Journal of Photoenergy, 2004, 6(2): 81-88. |
52 | CHEN X, ZHAO Q D, LI X Y, et al. Enhanced photocatalytic activity of degrading short chain chlorinated paraffins over reduced graphene oxide/CoFe2O4/Ag nanocomposite[J]. Journal of Colloid and Interface Science, 2016, 479: 89-97. |
53 | XIONG W, LI X Y, ZHAO Q D, et al. Insight into the photocatalytic mineralization of short chain chlorinated paraffins boosted by polydopamine and Ag nanoparticles[J]. Journal of Hazardous Materials, 2018, 359: 186-193. |
54 | WANG G H, FAN Z, WU D X, et al. Anoxic/aerobic granular active carbon assisted MBR integrated with nanofiltration and reverse osmosis for advanced treatment of municipal landfill leachate[J]. Desalination, 2014, 349: 136-144. |
55 | ZHANG L J, WANG X, JIAO Y Y, et al. Biodegradation of 4-chloronitrobenzene by biochemical cooperation between Sphingomonas sp. strain CNB3 and Burkholderia sp. strain CAN6 isolated from activated sludge[J]. Chemosphere, 2013, 91(9): 1243-1249. |
56 | MADELEY J R, BIRTLEY R D N. Chlorinated paraffins and the environment. 2. Aquatic and avian toxicology[J]. Environmental Science & Technology, 1980, 14(10): 1215-1221. |
57 | OMORI T, KIMURA T, KODAMA T. Bacterial cometabolic degradation of chlorinated paraffins[J]. Applied Microbiology and Biotechnology, 1987, 25(6): 553-557. |
58 | ALLPRESS J D, GOWLAND P C. Biodegradation of chlorinated paraffins and long-chain chloroalkanes by Rhodococcus sp. S45-1[J]. International Biodeterioration & Biodegradation, 1999, 43(4): 173-179. |
59 | HEATH E, BROWN W A, JENSEN S R, et al. Biodegradation of chlorinated alkanes and their commercial mixtures by Pseudomonas sp. strain 273[J]. Journal of Industrial Microbiology and Biotechnology, 2006, 33(3): 197-207. |
60 | LU M. Degradation of short chain polychlorinated paraffins by a new isolate: tests in pure culture and sewage sludge[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(7): 1273-1279. |
61 | LIU Y C, LI L Z, WU Y, et al. Isolation of an alkane-degrading Alcanivorax sp. strain 2B5 and cloning of the alkB gene[J]. Bioresource Technology, 2010, 101(1): 310-316. |
62 | SINGH C, LIN J. Isolation and characterization of diesel oil degrading indigenous microorganisms in Kwazulu-Natal, South Africa[J]. African Journal of Biotechnology, 2008, 7(12): 1927-1932. |
63 | ACER Ö, GÜVEN K, BEKLER F M, et al. Isolation and characterization of long-chain alkane-degrading Acinetobacter sp. BT1A from oil-contaminated soil in Diyarbakır, in the Southeast of Turkey[J]. Bioremediation Journal, 2016, 20(1): 80-87. |
64 | THRONE-HOLST M, WENTZEL A, ELLINGSEN T E, et al. Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874[J]. Applied and Environmental Microbiology, 2007, 73(10): 3327-3332. |
65 | DE PASQUALE C, PALAZZOLO E, PICCOLO L L, et al. Degradation of long-chain n-alkanes in soil microcosms by two actinobacteria[J]. Journal of Environmental Science and Health A, 2012, 47(3): 374-381. |
66 | BEILEN J B VAN, FUNHOFF E G, LOON A VAN, et al. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases[J]. Applied and Environmental Microbiology, 2006, 72(1): 59-65. |
67 | ANG T F, MAIANGWA J, SALLEH A B, et al. Dehalogenases: from improved performance to potential microbial dehalogenation applications[J]. Molecules, 2018, 23(5): 1100. |
68 | SALLIS P J, ARMFIELD S J, BULL A T, et al. Isolation and characterization of a haloalkane halidohydrolase from Rhodococcus erythropolis Y2[J]. Journal of General Microbiology, 1990, 136(1): 115-120. |
69 | LI A, SHAO Z. Biochemical characterization of a haloalkane dehalogenase DadB from Alcanivorax dieselolei B-5[J]. PLoS One, 2014, 9(2): e89144. |
70 | HEEB N V, SCHALLES S, LEHNER S, et al. Biotransformation of short-chain chlorinated paraffins (SCCPs) with LinA2: a HCH and HBCD converting bacterial dehydrohalogenase[J]. Chemosphere, 2019, 226: 744-754. |
71 | LAL R, PANDEY G, SHARMA P, et al. Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation[J]. Microbiology and Molecular Biology Reviews, 2010, 74(1): 58-80. |
72 | SHI Y J, WANG X H, QI Z, et al. Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules[J]. Journal of Hazardous Materials, 2011, 191(1/2/3): 103-109. |
73 | YANG S F, LIN C F, WU C J, et al. Fate of sulfonamide antibiotics in contact with activated sludge—Sorption and biodegradation[J]. Water Research, 2012, 46(4): 1301-1308. |
74 | NI S Q, CUI Q, ZHENG Z. Interaction of polybrominated diphenyl ethers and aerobic granular sludge: biosorption and microbial degradation[J]. BioMed Research International, 2014, 2014: 274620. |
75 | VASILIADOU I A, MOLINA R, MARTÍNEZ F, et al. Biological removal of pharmaceutical and personal care products by a mixed microbial culture: sorption, desorption and biodegradation[J]. Biochemical Engineering Journal, 2013, 81: 108-119. |
76 | FOOLAD M, HU J, TRAN N H, et al. Sorption and biodegradation characteristics of the selected pharmaceuticals and personal care products onto tropical soil[J]. Water Science and Technology, 2016, 73(1): 51-59. |
77 | 白皓, 高媛, 朱秀华, 等. 环境空气中短链氯化石蜡研究进展[J]. 生态毒理学报, 2016, 11(2): 80-88. |
BAI Hao, GAO Yuan, ZHU Xiuhua, et al. Research progress of short chain chlorinated paraffins in environmental air[J]. Asian Journal of Ecotoxicology, 2016, 11(2): 80-88. | |
78 | COLLINS C, FRYER M, GROSSO A. Plant uptake of non-ionic organic chemicals[J]. Environmental Science & Technology, 2006, 40(1): 45-52. |
79 | LI Y L, HOU X W, CHEN W F, et al. Carbon chain decomposition of short chain chlorinated paraffins mediated by pumpkin and soybean seedlings[J]. Environmental Science & Technology, 2019, 53(12): 6765-6772. |
80 | LI Y L, CHEN W F, KONG W Q, et al. Transformation of 1,1,1,3,8,10,10,10-octachlorodecane in air phase increased by phytogenic volatile organic compounds of pumpkin seedlings[J]. Science of the Total Environment, 2020, 704: 135455. |
81 | MURPHY G L, PERRY J J. Assimilation of chlorinated alkanes by hydrocarbon-utilizing fungi[J]. Journal of Bacteriology, 1984, 160(3): 1171-1174. |
82 | 阮久莉, 王勐, 毛亮, 等. 白腐菌锰过氧化物酶对2,2',4,4'-四溴联苯醚的降解[J]. 环境科学与技术, 2012, 35(1): 20-24. |
RUAN Jiuli, WANG Meng, MAO Liang, et al. Degradation of PBDEs by manganese peroxidase of white rot fungi Phanerochaete chrysosporium[J]. Environmental Science & Technology, 2012, 35(1): 20-24. | |
83 | ZHANG C, LU J, WU J, et al. Removal of phenanthrene from coastal waters by green tide algae Ulva prolifera[J]. Science of the Total Environment, 2017, 609: 1322-1328. |
84 | ZHANG C, LU J, WU J. Adsorptive removal of polycyclic aromatic hydrocarbons by detritus of green tide algae deposited in coastal sediment[J]. Science of the Total Environment, 2019, 670: 320-327. |
85 | KASKA D D, YOKOTA T, WEBB H M, et al. Long-chain chloroalkane utilization by a marine protozoan[J]. Journal of General Microbiology, 1991, 137(11): 2669-2672. |
86 | KASKA D D, POLNE-FULLER M, GIBOR A. Biotransformation of alkanes and haloalkanes by a marine amoeba[J]. Applied Microbiology and Biotechnology, 1991, 34(6): 814-817. |
[1] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[2] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
[3] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[4] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[5] | XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955. |
[6] | GAO Cong, CHEN Chenghu, CHEN Xiulai, LIU Liming. Progress and challenges of engineering microorganisms to produce biobased monomers [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4123-4135. |
[7] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[8] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[9] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[10] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[11] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[12] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[13] | LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui. Biosynthesis and EOR application of magnetic Fe3O4 NPs [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474. |
[14] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[15] | CAI Juyan, SU Qiong, WANG Yanbin, WANG Hongling, LIANG Junxi, WANG Zhongxu, GUO Li, ZHAO Libin. Research progress on biodegradable foaming materials [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1457-1470. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |