Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 3224-3238.DOI: 10.16085/j.issn.1000-6613.2020-1379
• Materials science and technology • Previous Articles Next Articles
BAI Ruibing1,2(), WANG Junfeng1(), WANG Daoguang1, ZHANG Yanqiang1,3
Received:
2020-07-17
Revised:
2020-12-18
Online:
2021-06-22
Published:
2021-06-06
Contact:
WANG Junfeng
白瑞兵1,2(), 王均凤1(), 王道广1, 张延强1,3
通讯作者:
王均凤
作者简介:
白瑞兵(1989—),男,博士研究生,研究方向为金属离子分离。E-mail:基金资助:
CLC Number:
BAI Ruibing, WANG Junfeng, WANG Daoguang, ZHANG Yanqiang. Research progress of ionic liquid-based extraction separation of lithium from brine[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3224-3238.
白瑞兵, 王均凤, 王道广, 张延强. 离子液体基萃取体系用于卤水中锂分离的研究进展[J]. 化工进展, 2021, 40(6): 3224-3238.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1379
1 | KAYHAN T, NUGAY N, NUGAY T. Metallation of mesitylene by organolithium compounds in the presence of lithium polyether alkoxides[J]. Turkish Journal of Chemistry, 2002, 26(6): 965-971. |
2 | HAMAUDI Z T, NUGAY N, NUGAY T. Anionic polymerization of methyl methacrylate as promoted by a N-butyl lithium-pyridazine-polyether alkoxide based complex initiator system[J]. Turkish Journal of Chemistry, 2004, 28(3): 387-394. |
3 | ZOU H Y, GRATZ E, APELIAN D, et al. A novel method to recycle mixed cathode materials for lithium ion batteries[J]. Green Chemistry, 2013, 15(5): 1183. |
4 | GNEDENKOV S V, OPRA D P, SINEBRYUKHOV S L, et al. Hydrolysis lignin: electrochemical properties of the organic cathode material for primary lithium battery[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(3): 903-910. |
5 | WAN S, JIANG X G, GUO B K, et al. A stable fluorinated and alkylated lithium malonatoborate salt for lithium ion battery application[J]. Chemical Communications, 2015, 51(48): 9817-9820. |
6 | Geological Survey U.S.. Mineral commodity summaries2020 (2020-02-06)[EB/OL]. . |
7 | JAKHAR S, ABHANGI M, TIWARI S, et al. Tritium breeding mock-up experiments containing lithium titanate ceramic pebbles and lead irradiated with DT neutrons[J]. Fusion Engineering and Design, 2015, 95: 50-58. |
8 | 赵旭, 张琦, 武海虹, 等. 盐湖卤水提锂[J]. 化学进展, 2017, 29(7): 796-808. |
ZHAO X, ZHANG Q, WU H H, et al. Extraction of lithium from salt lake brine[J]. Progress in Chemistry, 2017, 29(7): 796-808. | |
9 | OOI K, SONODA A, MAKITA Y, et al. Recovery of lithium from salt-brine eluates by direct crystallization as lithium sulfate[J]. Hydrometallurgy, 2017, 174: 123-130. |
10 | WANG H Y, ZHONG Y, DU B Q, et al. Recovery of both magnesium and lithium from high Mg/Li ratio brines using a novel process[J]. Hydrometallurgy, 2018, 175: 102-108. |
11 | LIU X H, ZHONG M L, CHEN X Y, et al. Separating lithium and magnesium in brine by aluminum-based materials[J]. Hydrometallurgy, 2018, 176: 73-77. |
12 | CHEN L, SHI G S, SHEN J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550(7676): 380-383. |
13 | JI Z Y, CHEN Q B, YUAN J S, et al. Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis[J]. Separation and Purification Technology, 2017, 172: 168-177. |
14 | ZHANG L C, LI L J, SHI D, et al. Selective extraction of lithium from alkaline brine using HBTA-TOPO synergistic extraction system[J]. Separation and Purification Technology, 2017, 188: 167-173. |
15 | SHI D, ZHANG L C, PENG X W, et al. Extraction of lithium from salt lake brine containing boron using multistage centrifuge extractors[J]. Desalination, 2018, 441: 44-51. |
16 | WANG J F, YANG S C, BAI R B, et al. Lithium recovery from the mother liquor obtained in the process of Li2CO3 production[J]. Industrial & Engineering Chemistry Research, 2019, 58(3): 1363-1372. |
17 | 任世中, 曾英, 李陇岗, 等. 盐湖卤水提锂方法研究进展[J]. 广州化工, 2013, 41: 35-37, 50. |
REN S Z, ZENG Y, LI L G, et al. Development progress on the extraction of lithium from salt lake brines[J]. Guangzhou Chemical Industry, 2013, 41: 35-37, 50. | |
18 | 罗阿敏, 程芳, 李辉谷, 等. 盐湖卤水提锂的研究进展[J]. 化工矿物与加工, 2018, 47(5): 66-72. |
LUO A M, CHENG F, LI G H, et al. Research progress on lithium extraction from salt lake brine[J]. Industrial Minerals & Processing, 2018, 47(5): 66-72. | |
19 | 刘卓, 周云峰, 柴登鹏, 等. 从盐湖卤水中提取锂的技术研究进展与展望[J]. 材料导报, 2015, 29(S2): 133-137. |
LIU Z, ZHOU Y F, CHAI D P, et al. Progress and prospects of lithium extraction technology from salt lake brine[J]. Materials Review, 2015, 29(S2): 133-137. | |
20 | 赵冬, 杜雪敏, 王士强, 等. 高镁、锂比盐湖卤水提锂研究[J]. 盐科学与化工, 2017, 46(6): 40-44. |
ZHAO D, DU X M, WANG S Q, et al. Research on extraction from salt lake brine with high Mg/Li ratio[J]. Journal of Salt Science and Chemical Industry, 2017, 46(6): 40-44. | |
21 | WALDEN U P. Molecular weights and electrical conductivity of several fused salts[J]. Bulletin of the Imperial Academy of Sciences, 1914, 8: 405-422. |
22 | WILKES J S, ZAWOROTKO M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. Journal of the Chemical Society: Chemical Communications, 1992(13): 965. |
23 | WELTON T. Room-temperature ionic liquids: solvents for synthesis and catalysis [J]. Chemical Reviews, 1999, 99: 2071-2084. |
24 | BRENNECKE J F, MAGINN E J. Ionic liquids: innovative fluids for chemical processing[J]. AIChE Journal, 2001, 47(11): 2384-2389. |
25 | HUDDLESTON J G, WILLAUER H D, SWATLOSKI R P, et al. Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction[J]. Chemical Communications, 1998(16): 1765-1766. |
26 | ZHAO X, YANG Q W, XU D, et al. Design and screening of ionic liquids for C2H2/C2H4 separation by COSMO-RS and experiments[J]. AIChE Journal, 2015, 61(6): 2016-2027. |
27 | DAI S, JU Y H, BARNES C E. Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids[J]. Journal of the Chemical Society: Dalton Transactions, 1999(8): 1201-1202. |
28 | DIETZ M L, DZIELAWA J A. Ion-exchange as a mode of cation transfer into room-temperature ionic liquids containing crown ethers: implications for the ‘greenness’ of ionic liquids as diluents in liquid-liquid extraction[J]. Chemical Communications, 2001, 20: 2124-2125. |
29 | STEPINSKI D C, JENSEN M P, DZIELAWA J A, et al. Synergistic effects in the facilitated transfer of metal ions into room-temperature ionic liquids[J]. Green Chemistry, 2005, 7(3): 151-158. |
30 | VISSER A E, SWATLOSKI R P, REICHERT W M, et al. Traditional extractants in nontraditional solvents: groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids[J]. Industrial & Engineering Chemistry Research, 2000, 39(10): 3596-3604. |
31 | CHUN S, DZYUBA S V, BARTSCH R A. Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether[J]. Analytical Chemistry, 2001,73(15): 3737-3741. |
32 | LUO H, DAI S, BONNESEN P V. Solvent extraction of Sr2+ and Cs+ based on room-temperature ionic liquids containing monoaza-substituted crown ethers[J]. Analytical Chemistry, 2004, 76(10): 2773-2779. |
33 | LUO H M, DAI S, BONNESEN P V, et al. Separation of fission products based on ionic liquids: task-specific ionic liquids containing an aza-crown ether fragment[J]. Journal of Alloys and Compounds, 2006, 418(1/2): 195-199. |
34 | LUO H M, YU M, DAI S. Solvent extraction of Sr2+ and Cs+ based on hydrophobic protic ionic liquids[J]. Zeitschrift für Naturforschung A, 2007, 62(5/6): 281-291. |
35 | 徐超, 沈兴海, 陈庆德, 等. 冠醚-离子液体体系对水相中锶离子的萃取研究[J]. 中国科学: 化学, 2009, 39(11): 1402-1408. |
XU C, SHEN X M, CHEN Q D, et al. Investigation on the extraction of strontium ions from aqueous phase using crown ether-ionic liquid systems[J]. Science Sinica Chimica, 2009, 39(11): 1402-1408. | |
36 | VISSER A E, SWATLOSKI R P, GRIFFIN S T, et al. Liquid/liquid extraction of metal ions in room temperature ionic liquids[J]. Separation Science and Technology, 2001, 36(5/6): 785-804. |
37 | COCALIA V A, JENSEN M P, HOLBREY J D, et al. Identical extraction behavior and coordination of trivalent or hexavalent F-element cations using ionic liquid and molecular solvents[J]. Dalton Transactions, 2005(11): 1966-1971. |
38 | HIRAYAMA N, DEGUCHI M, KAWASUMI H, et al. Use of 1-alkyl-3-methylimidazolium hexafluorophosphate room temperature ionic liquids as chelate extraction solvent with 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione[J]. Talanta, 2005, 65(1): 255-260. |
39 | LOHITHAKSHAN K V, AGGARWAL S K. Solvent extraction studies of Pu() with CMPO in 1-octyl 3-methyl imidazolium hexa fluorophosphate ([C8mim][PF6]) room temperature ionic liquid (RTIL)[J]. Radiochimica Acta, 2008, 96(2): 93-97. |
40 | WANG Y G, XIONG Y, MENG S L, et al. Separation of yttrium from heavy lanthanide by CA-100 using the complexing agent[J]. Talanta, 2004, 63(2): 239-243. |
41 | ZUO Y, LIU Y, CHEN J, et al. Extraction and recovery of cerium(Ⅳ) along with fluorine(Ⅰ) from bastnasite leaching liquor by DEHEHP in [C8mim]PF6[J]. Journal of Chemical Technology & Biotechnology, 2009, 84(7): 949-956. |
42 | 宋贤菊, 王仕芳, 李在均. 离子液体作为绿色介质应用于盐湖卤水中锂提取的研究[J]. 稀有金属, 2011, 35(3): 434-439. |
SONG X J, WANG S F, LI Z J. Application of ionic liquid as green medium for extraction of lithium from salt lake brine[J]. Chinese Journal of Rare Metals, 2011, 35(3): 434-439. | |
43 | 李在均, 王仕芳, 杨杰, 等. 一种从盐湖卤水中提取锂的方法: CN101767804A[P]. 2009-12-25. |
LI Z J, WANG S F, YANG J, et al. A method for extracting lithium from salt lake brine: CN101767804A[P]. 2009-12-25. | |
44 | 邓天龙, 高道林, 徐晓平, 等. 一种从盐湖卤水高效萃取锂的方法: CN201310690406.2[P]. 2013-12-13. |
DENG T L, GAO D L, XU X P, et al. A method for efficiently extracting lithium from salt lake brine: CN201310690406.2[P]. 2013-12-13. | |
45 | 苏慧, 朱兆武, 王丽娜, 等. 从盐湖卤水中提取与回收锂的技术进展及展望[J]. 材料导报, 2019, 33(13): 2119-2126. |
SU H, ZHU Z W, WANG L N, et al. Advances and prospects of extracting and recovering lithium from salt lake brines[J]. Materials Reports, 2019, 33(13): 2119-2126. | |
46 | 陈仁坦, 刘植昌, 孟祥海, 等. 离子液体萃取重金属离子的研究进展[J]. 化工进展, 2013, 32(11): 2757-2763. |
CHEN S T, LIU Z C, MENG X H, et al. Advances in heavy metal ion extraction with ionic liquids[J]. Chemical Industry and Engineering Progress, 2013, 32(11): 2757-2763. | |
47 | 王威, 陈继, 刘红召, 等. 功能性离子液体在金属萃取分离中的研究进展[J]. 应用化学, 2015, 32(7): 733-742. |
WANG W, CHEN J, LIU H Z, et al. Research progress of task-specific ionic liquids used in metal ions extraction[J]. Chinese Journal of Applied Chemistry, 2015, 32(7): 733-742. | |
48 | 朱朝梁, 温现明, 邓小川, 等. 离子液体合成及其在萃取分离中的应用进展[J]. 盐湖研究, 2016, 24(3): 55-61. |
ZHU C L, WEN X M, DENG X C, et al. Advances in the synthesis and its application of ionic liquid for extraction separation[J]. Journal of Salt Lake Research, 2016, 24(3): 55-61. | |
49 | 曹斌, 黄建辉, 杨亮, 等. 离子液体萃取金属离子研究进展[J]. 江西化工, 2017(6): 11-15. |
CAO B, HUANG J H, YANG L, et al. Research progress in extraction of metal ionic liquids with ionic liquids[J]. Jiangxi Chemical Industry, 2017(6): 11-15. | |
50 | 景燕, 石成龙, 贾永忠, 等. 一种从盐湖卤水中分离锂的方法: CN201410478292.X[P]. 2014-09-18. |
JING Y, SHI C L, JIA Y Z, et al. A method for separating lithium from salt lake brine: CN201410478292.X[P]. 2014-09-18. | |
51 | SHI C L, JIA Y Z, ZHANG C, et al. Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate[J]. Fusion Engineering and Design, 2015, 90: 1-6. |
52 | SHI C L, DUAN D P, JIA Y Z, et al. A highly efficient solvent system containing ionic liquid in tributyl phosphate for lithium ion extraction[J]. Journal of Molecular Liquids, 2014, 200: 191-195. |
53 | SHI C L, JIA Y Z, XIE S L, et al. Extraction of lithium ion using ionic liquids dissolved in tributyl phosphate[C]//2015 4th International Conference on Environment, Chemistry and Biology, 2015. |
54 | 石成龙, 贾永忠, 景燕. 离子液体-磷酸三丁酯体系分离盐湖卤水镁锂[J]. 化工学报, 2015, 66(S1): 253-259. |
SHI C L, JIA Y Z, JING Y. Lithium and magnesium separation from salt lake brine by ionic liquids containing tributyl phosphate[J]. CIESC Journal, 2015, 66(S1): 253-259. | |
55 | 石成龙, 景燕, 肖江, 等. 离子液体体系用于盐湖卤水提取锂[J]. 化工学报, 2015, 66(S1): 265-271. |
SHI C L, JING Y, XIAO J, et al. Application of ionic liquids for extraction of lithium from salt lake brine[J]. CIESC Journal, 2015, 66(S1): 265-271. | |
56 | SHI C L, JING Y, JIA Y Z. Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid[J]. Journal of Molecular Liquids, 2016, 215: 640-646. |
57 | SHI C L, JING Y, JIA Y Z. Tri-n-butyl phosphate-ionic liquid mixtures for Li+ extraction from Mg2+-containing brines at 303-343K[J]. Russian Journal of Physical Chemistry A, 2017, 91(4): 692-696. |
58 | SEKIMOTO T, NISHIHAMA S, YOSHIZUKA K. Extraction of lithium from salt lake brine with tributyl phosphate and an ionic liquid[J]. Solvent Extraction Research and Development, 2018, 25(2): 117-123. |
59 | 束玉珍, 吴继宗, 邓惟勤, 等. 苯并-15-冠-5/离子液体体系液液萃取锂[J]. 核化学与放射化学, 2017, 39(2): 151-157. |
SHU Y Z, WU J Z, DENG W Q, et al. Liquid-liquid extraction of lithium by benzo-15-crown-5/ionic liquid system[J]. Journal of Nuclear and Radiochemistry. 2017, 39(2): 151-157. | |
60 | YANG S C, LIU G W, WANG J F, et al. Recovery of lithium from alkaline brine by solvent extraction with functionalized ionic liquid[J]. Fluid Phase Equilibria, 2019, 493: 129-136. |
61 | CUI L, JIANG K, WANG J F, et al. Role of ionic liquids in the efficient transfer of lithium by Cyanex 923 in solvent extraction system[J]. AIChE Journal, 2019, 65(8): e16606. |
62 | TORREJOS R E C, NISOLA G M, PARK M J, et al. Liquid-liquid extraction of Li+ using mixed ion carrier system at room temperature ionic liquid[J]. Desalination and Water Treatment, 2015, 53(10): 2774-2781. |
63 | TORREJOS R E C, NISOLA G M, SONG H S, et al. Liquid-liquid extraction of lithium using lipophilic dibenzo-14-crown-4 ether carboxylic acid in hydrophobic room temperature ionic liquid[J]. Hydrometallurgy, 2016, 164: 362-371. |
64 | WANG X Q, JING Y, LIU H, et al. Extraction of lithium from salt lake brines by bis[(trifluoromethyl) sulfonyl]imide-based ionic liquids[J]. Chemical Physics Letters, 2018, 707: 8-12. |
65 | WANG Y, LIU H T, FAN J H, et al. Recovery of lithium ions from salt lake brine with a high magnesium/lithium ratio using heteropolyacid ionic liquid[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3062-3072. |
66 | GAO D L, YU X P, GUO Y F, et al. Extraction of lithium from salt lake brine with triisobutyl phosphate in ionic liquid and kerosene[J]. Chemical Research in Chinese Universities, 2015, 31(4): 621-626. |
67 | GAO D L, GUO Y F, YU X P, et al. Extracting lithium from the high concentration ratio of magnesium and lithium brine using imidazolium-based ionic liquids with varying alkyl chain lengths[J]. Journal of Chemical Engineering of Japan, 2016, 49(2): 104-110. |
68 | CHEN S Q, GAO D L, YU X P, et al. Thermokinetics of lithium extraction with the novel extraction systems (tri-isobutyl phosphate + ionic liquid + kerosene)[J]. The Journal of Chemical Thermodynamics, 2018, 123: 79-85. |
69 | ZHU W B, JIA Y Z, ZHANG Q Y, et al. The effect of ionic liquids as co-extractant with crown ether for the extraction of lithium in dichloromethane-water system[J]. Journal of Molecular Liquids, 2019, 285: 75-83. |
70 | DIETZ M L, STEPINSKI D C. A ternary mechanism for the facilitated transfer of metal ions into room-temperature ionic liquids (RTILs): implications for the “greenness” of RTILs as extraction solvents[J]. Green Chemistry, 2005, 7(10): 747-750. |
71 | LUO H M, DAI S, BONNESEN P V, et al. Extraction of cesium ions from aqueous solutions using Calix[4]arene-bis(tert-octylbenzo-crown-6) in ionic liquids[J]. Analytical Chemistry, 2004, 76(11): 3078-3083. |
72 | ZANTE G, MASMOUDI A, BARILLON R, et al. Separation of lithium, cobalt and nickel from spent lithium-ion batteries using TBP and imidazolium-based ionic liquids[J]. Journal of Industrial and Engineering Chemistry, 2020, 82: 269-277. |
73 | PARMENTIER D, VANDER HOOGERSTRAETE T, METZ S J, et al. Selective extraction of metals from chloride solutions with the tetraoctylphosphonium oleate ionic liquid[J]. Industrial & Engineering Chemistry Research, 2015, 54(18): 5149-5158. |
74 | SHI C L, JING Y, XIAO J, et al. Liquid-liquid extraction of lithium using novel phosphonium ionic liquid as an extractant[J]. Hydrometallurgy, 2017,169: 314-320. |
75 | SHI C L, JING Y, XIAO J, et al. Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents[J]. Separation and Purification Technology, 2017, 172: 473-479. |
76 | SHI C L, LI H X, LIU B, et al. Solvent extraction of lithium from aqueous solution using an ammonium ionic liquid[J]. Journal of Molecular Liquids, 2020, 304: 112756. |
77 | ZHAO X, WU H H, DUAN M S, et al. Liquid-liquid extraction of lithium from aqueous solution using novel ionic liquid extractants via COSMO-RS and experiments[J]. Fluid Phase Equilibria, 2018, 459: 129-137. |
78 | WU H H, LIN Y K, FENG W Y, et al. A novel nanofiltration membrane with [MimAP][Tf2N] ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio[J]. Journal of Membrane Science, 2020, 603: 117997. |
79 | ZANTE G, BOLTOEVA M, MASMOUDI A, et al. Lithium extraction from complex aqueous solutions using supported ionic liquid membranes[J]. Journal of Membrane Science, 2019, 580: 62-76. |
80 | HOSHINO T. Preliminary studies of lithium recovery technology from seawater by electrodialysis using ionic liquid membrane[J]. Desalination, 2013, 317: 11-16. |
81 | HOSHINO T. Development of technology for recovering lithium from seawater by electrodialysis using ionic liquid membrane[J]. Fusion Engineering and Design, 2013, 88(11): 2956-2959. |
82 | LIU G, ZHAO Z W, HE L H. Highly selective lithium recovery from high Mg/Li ratio brines[J]. Desalination, 2020, 474: 114185. |
83 | ZHOU Z Y, QIN W, LIANG S K, et al. Recovery of lithium using tributyl phosphate in methyl isobutyl ketone and FeCl3[J]. Industrial & Engineering Chemistry Research, 2012, 51(39): 12926-12932. |
84 | ZHOU Z Y, QIN W, LIU Y, et al. Extraction equilibria of lithium with tributyl phosphate in kerosene and FeCl3[J]. Journal of Chemical & Engineering Data, 2012, 57(1): 82-86. |
85 | 邓天龙, 张楠, 高道林, 等. 一种高镁锂比卤水提锂的新型共萃体系及其共萃方法: CN201410604155.6[P]. 2014-10-31. |
DENG T L, ZHANG N, GAO D L, et al. Novel co-extraction system and co-extraction method for extracting lithium from brine with high magnesium-lithium ratio: CN201410604155.6[P]. 2014-10-31. | |
86 | SONG J F, HUANG T, QIU H B, et al. Recovery of lithium from salt lake brine of high Mg/Li ratio using Na[FeCl4·2TBP] as extractant: thermodynamics, kinetics and processes[J]. Hydrometallurgy, 2017, 173: 63-70. |
87 | ZHOU Z Y, LIU H T, FAN J H, et al. Selective extraction of lithium ion from aqueous solution with sodium phosphomolybdate as a coextraction agent[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8885-8892. |
[1] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[4] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[5] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[6] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[7] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[8] | QIAN Sitian, PENG Wenjun, ZHANG Xianming. Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816. |
[9] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[10] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[11] | LI Xin, YANG Zao, ZHONG Xinru, HAN Haoxuan, ZHUANG Xuning, BAI Jianfeng, DONG Bin, XU Zuxin. Binding mechanism of Pb2+ onto humic acids from sludge hyper-thermophilic composting [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4957-4966. |
[12] | YANG Han, ZHANG Yibo, LI Qi, ZHANG Jun, TAO Ying, YANG Quanhong. Practical carbon anodes for sodium-ion batteries: progress and challenge [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4029-4042. |
[13] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[14] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[15] | OUYANG Sufang, ZHOU Daowei, HUANG Wei, JIA Feng. Research progress on novel anti-migration rubber antioxidants [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3708-3719. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |