Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (5): 2813-2826.DOI: 10.16085/j.issn.1000-6613.2020-1145
• Resources and environmental engineering • Previous Articles Next Articles
WANG Xu(), WU Yushuai, YANG Xin, CHEN Huiyong(), ZHANG Jianbo, MA Xiaoxun
Received:
2020-06-22
Online:
2021-05-24
Published:
2021-05-06
Contact:
CHEN Huiyong
王旭(), 吴玉帅, 杨欣, 陈汇勇(), 张建波, 马晓迅
通讯作者:
陈汇勇
作者简介:
王旭(1995—),男,硕士研究生,研究方向为分子筛吸附脱除VOCs。E-mail:基金资助:
CLC Number:
WANG Xu, WU Yushuai, YANG Xin, CHEN Huiyong, ZHANG Jianbo, MA Xiaoxun. Review of adsorptive removal of volatile organic compounds by zeolite[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2813-2826.
王旭, 吴玉帅, 杨欣, 陈汇勇, 张建波, 马晓迅. 沸石分子筛用于VOCs吸附脱除的应用研究进展[J]. 化工进展, 2021, 40(5): 2813-2826.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1145
骨架拓扑 | 多级孔分子筛 | Vmeso/Vtotal | HF | VOCs | 吸附容量/mg·g-1 | 吸附容量/mmol·g-1 | 吸附温度/K | 参考文献 | 年份/年 |
---|---|---|---|---|---|---|---|---|---|
DDR | ZSM-58 | 0.23 | 0.18 | 丙烯 | 62.8 | — | 298 | [ | 2018 |
DDR | ZSM-58 | 0.23 | 0.18 | 丙烷 | 19.5 | — | 298 | [ | 2018 |
CHA | H-SAPO-34 | 0.66 | 0.11 | 正丁烷 | 97 | — | 298 | [ | 2012 |
MFI | Na-ZSM-5 | 0.61 | 0.29 | 乙醛 | 1.92 | — | 298 | [ | 2011 |
MFI | Na-ZSM-5 | 0.67 | 0.13 | 正己烷 | 290 | — | 298 | [ | 2016 |
MFI | H-ZSM-5 | 0.57 | 0.08 | 苯 | — | 4.9 | 298 | [ | 2012 |
MFI | H-ZSM-5 | 0.57 | 0.08 | 环己烷 | — | 3.6 | 298 | [ | 2012 |
MFI | H-ZSM-5 | 0.57 | 0.08 | 异丙醇 | — | 6.7 | 298 | [ | 2012 |
MFI | Na-ZSM-5 | 0.73 | — | 甲苯 | 58 | — | 298 | [ | 2020 |
MFI | Si-ZSM-5 | 0.52 | — | 甲苯 | 44 | — | 298 | [ | 2020 |
MFI | H-ZSM-5 | 0.73 | 0.08 | 对二甲苯 | 172 | — | 333 | [ | 2020 |
BEA | Na-BETA | 0.70 | 0.11 | 正己烷 | 693 | — | 298 | [ | 2016 |
BEA | Na-BETA | 0.75 | 0.13 | 对二甲苯 | — | 1.4 | 308 | [ | 2015 |
BEA | Si-BETA | 0.39 | 0.18 | 丙酮 | — | 3.9 | 298 | [ | 2017 |
BEA | Si-BETA | 0.39 | 0.18 | 正己烷 | — | 2.4 | 298 | [ | 2017 |
BEA | Si-BETA | 0.39 | 0.18 | 苯 | — | 2.1 | 298 | [ | 2017 |
BEA | Si-BETA | 0.39 | 0.18 | 甲苯 | — | 1.8 | 298 | [ | 2017 |
FAU | Na-USY | 0.42 | 0.03 | 甲苯 | 268 | — | 298 | [ | 2019 |
FAU | H-USY | 0.43 | 0.06 | 甲苯 | 285 | — | 298 | [ | 2019 |
FAU | Na-Y | 0.39 | 0.07 | 甲苯 | 300 | — | 298 | [ | 2019 |
FAU | Na-X | 0.37 | 0.18 | 正己烷 | 219 | — | 298 | [ | 2016 |
骨架拓扑 | 多级孔分子筛 | Vmeso/Vtotal | HF | VOCs | 吸附容量/mg·g-1 | 吸附容量/mmol·g-1 | 吸附温度/K | 参考文献 | 年份/年 |
---|---|---|---|---|---|---|---|---|---|
DDR | ZSM-58 | 0.23 | 0.18 | 丙烯 | 62.8 | — | 298 | [ | 2018 |
DDR | ZSM-58 | 0.23 | 0.18 | 丙烷 | 19.5 | — | 298 | [ | 2018 |
CHA | H-SAPO-34 | 0.66 | 0.11 | 正丁烷 | 97 | — | 298 | [ | 2012 |
MFI | Na-ZSM-5 | 0.61 | 0.29 | 乙醛 | 1.92 | — | 298 | [ | 2011 |
MFI | Na-ZSM-5 | 0.67 | 0.13 | 正己烷 | 290 | — | 298 | [ | 2016 |
MFI | H-ZSM-5 | 0.57 | 0.08 | 苯 | — | 4.9 | 298 | [ | 2012 |
MFI | H-ZSM-5 | 0.57 | 0.08 | 环己烷 | — | 3.6 | 298 | [ | 2012 |
MFI | H-ZSM-5 | 0.57 | 0.08 | 异丙醇 | — | 6.7 | 298 | [ | 2012 |
MFI | Na-ZSM-5 | 0.73 | — | 甲苯 | 58 | — | 298 | [ | 2020 |
MFI | Si-ZSM-5 | 0.52 | — | 甲苯 | 44 | — | 298 | [ | 2020 |
MFI | H-ZSM-5 | 0.73 | 0.08 | 对二甲苯 | 172 | — | 333 | [ | 2020 |
BEA | Na-BETA | 0.70 | 0.11 | 正己烷 | 693 | — | 298 | [ | 2016 |
BEA | Na-BETA | 0.75 | 0.13 | 对二甲苯 | — | 1.4 | 308 | [ | 2015 |
BEA | Si-BETA | 0.39 | 0.18 | 丙酮 | — | 3.9 | 298 | [ | 2017 |
BEA | Si-BETA | 0.39 | 0.18 | 正己烷 | — | 2.4 | 298 | [ | 2017 |
BEA | Si-BETA | 0.39 | 0.18 | 苯 | — | 2.1 | 298 | [ | 2017 |
BEA | Si-BETA | 0.39 | 0.18 | 甲苯 | — | 1.8 | 298 | [ | 2017 |
FAU | Na-USY | 0.42 | 0.03 | 甲苯 | 268 | — | 298 | [ | 2019 |
FAU | H-USY | 0.43 | 0.06 | 甲苯 | 285 | — | 298 | [ | 2019 |
FAU | Na-Y | 0.39 | 0.07 | 甲苯 | 300 | — | 298 | [ | 2019 |
FAU | Na-X | 0.37 | 0.18 | 正己烷 | 219 | — | 298 | [ | 2016 |
地区及厂家 | VOCs | VOCs去除率/% |
---|---|---|
唐山某工厂涂装车间 | 异丙醇、环己酮、乙酸乙酯 | 90 |
天津某工厂涂装车间 | 丙酮、苯乙烯、甲苯、异丙醇 | 96 |
广州某汽车工厂涂装车间 | 邻间二甲苯、丙酮、苯乙烯、环己酮 | 90 |
青岛某机车喷漆车间 | 乙酸乙酯、二甲苯 | 90 |
上海某所半导体厂 | 甲苯、邻二甲苯、丙酮、苯乙烯 | 95 |
东莞某模具UV漆废气 | 二甲苯、醋酸丁酯、丙酮 | 90 |
河南某家具厂喷漆 | 乙酸乙酯、苯、甲苯 | 90 |
浙江某橡胶集团 | 苯乙烯 | 90 |
江苏某橡塑印刷废气 | 丙酮 | 90 |
地区及厂家 | VOCs | VOCs去除率/% |
---|---|---|
唐山某工厂涂装车间 | 异丙醇、环己酮、乙酸乙酯 | 90 |
天津某工厂涂装车间 | 丙酮、苯乙烯、甲苯、异丙醇 | 96 |
广州某汽车工厂涂装车间 | 邻间二甲苯、丙酮、苯乙烯、环己酮 | 90 |
青岛某机车喷漆车间 | 乙酸乙酯、二甲苯 | 90 |
上海某所半导体厂 | 甲苯、邻二甲苯、丙酮、苯乙烯 | 95 |
东莞某模具UV漆废气 | 二甲苯、醋酸丁酯、丙酮 | 90 |
河南某家具厂喷漆 | 乙酸乙酯、苯、甲苯 | 90 |
浙江某橡胶集团 | 苯乙烯 | 90 |
江苏某橡塑印刷废气 | 丙酮 | 90 |
1 | 李长英, 陈明功, 盛楠, 等. 挥发性有机物处理技术的特点与发展[J]. 化工进展, 2016, 35(3): 917-925. |
LI Changying, CHEN Minggong, SHENG Nan, et al. The characteristics and development of volatile organic compounds treatment technology[J]. Chemical Industry and Engineering Progress, 2016, 35(3): 917-925. | |
2 | KRISHNAMURTHY Anirudh, ADEBAYO Busuyi, GELLES Teresa, et al. Abatement of gaseous volatile organic compounds: a process perspective[J]. Catalysis Today, 2020, 350: 100-119. |
3 | GELLES Teresa, KRISHNAMURTHY Anirudh, ADEBAYO Busuyi, et al. Abatement of gaseous volatile organic compounds: a material perspective[J]. Catalysis Today, 2020, 350: 3-18. |
4 | ZHANG Renyi, WANG Gehui, GUO Song, et al. Formation of urban fine particulate matter[J]. Chemical Reviews, 2015, 115(10): 3803-3855. |
5 | MOON Hyung Suk, KIM In Soo, KANG Sin Jae, et al. Adsorption of volatile organic compounds using activated carbon fiber filter in the automobiles[J]. Carbon Lett., 2014, 15(3): 203-209. |
6 | DI Jiangtao, HU Dongmei, CHEN Hongyuan, et al. Ultrastrong, foldable, and highly conductive carbon nanotube film[J]. ACS Nano, 2012, 6(6): 5457-5464. |
7 | HUANG Haibao, XU Ying, FENG Qiuyu, et al. Low temperature catalytic oxidation of volatile organic compounds: a review[J]. Catalysis Science & Technology, 2015, 5(5): 2649-2669. |
8 | Salvatore SCIRÈ, LIOTTA Leonarda Francesca. Supported gold catalysts for the total oxidation of volatile organic compounds[J]. Applied Catalysis B: Environmental, 2012, 125: 222-246. |
9 | David COOPER C, CLAUSEN Christian A, TOMLIN Doug,et al. Enhancement of organic vapor incineration using hydrogen peroxide[J]. Journal of Hazardous Materials, 1991, 27(3): 273-285. |
10 | DELAGRANGE Sophie, PINARD Ludovic, TATIBOUET Jean-Michel. Combination of a non-thermal plasma and a catalyst for toluene removal from air: manganese based oxide catalysts[J]. Applied Catalysis B: Environmental, 2006, 68(3/4): 92-98. |
11 | MCCULLAGH Cathy, SKILLEN Nathan, ADAMS Morgan, et al. Photocatalytic reactors for environmental remediation: a review[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(8): 1002-1017. |
12 | 许伟, 刘军利, 孙康. 活性炭吸附法在挥发性有机物治理中的应用研究进展[J]. 化工进展, 2016, 35(4): 1223-1229. |
XU Wei, LIU Junli, SUN Kang. Application progresses in the treatment of volatile organic compounds by adsorption on activated carbon[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 1223-1229. | |
13 | TWUMASI Ebenezer, FORSLUND Mikael, NORBERG Peter, et al. Carbon-silica composites prepared by the precipitation method. Effect of the synthesis parameters on textural characteristics and toluene dynamic adsorption[J]. Journal of Porous Materials, 2012, 19(3): 333-343. |
14 | RAKIC V, RAC V, KRMAR M, et al. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons[J]. Journal of Hazardous Materials, 2015, 282: 141-149. |
15 | BAUR Guillaume B, BESWICK Oliver, SPRING Jonathan, et al. Activated carbon fibers for efficient VOC removal from diluted streams: the role of surface functionalities[J]. Adsorption, 2015, 21(4): 255-264. |
16 | LIU Dong, YUAN Peng, TAN Daoyong, et al. Effects of inherent/enhanced solid acidity and morphology of diatomite templates on the synthesis and porosity of hierarchically porous carbon[J]. Langmuir, 2010, 26(24): 18624-18627. |
17 | DOU Baojuan, HU Qin, LI Jinjun, et al. Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1615-1624. |
18 | 李小娟, 何长发, 黄斌, 等. 金属有机骨架材料吸附去除环境污染物的进展[J]. 化工进展, 2016, 35(2): 586-594. |
LI Xiaojuan, HE Changfa, HUANG Bin, et al. Progress in the applications of metal-organic frameworks in adsorption removal of hazardous materials[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 586-594. | |
19 | 李立博, 王勇, 王小青, 等. 柔性金属有机骨架材料(MOFs)用于气体吸附分离[J]. 化工进展, 2016, 35(6): 1794-1803. |
LI Libo, WANG Yong, WANG Xiaoqing, et al. Selective gas adsorption and separation in flexible metal-organic frameworks[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1794-1803. | |
20 | WANG Hao, LI Jing. Microporous metal-organic frameworks for adsorptive separation of C5-C6 alkane isomers[J]. Accounts of chemical research, 2019, 52(7): 1968-1978. |
21 | KIM Ki-Joong, Ho-Geun AHN. The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating[J]. Microporous and Mesoporous Materials, 2012, 152: 78-83. |
22 | YOUSEF Rushdi I, Bassam El-ESWED, Al-MUHTASEB Ala’a H. Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies[J]. Chemical Engineering Journal, 2011, 171(3): 1143-1149. |
23 | ILIC Boris, WETTSTEIN Stephanie G. A review of adsorbate and temperature-induced zeolite framework flexibility[J]. Microporous and Mesoporous Materials, 2017, 239: 221-234. |
24 | BRODU Nicolas, SOCHARD Sabine, ANDRIANTSIFERANA Caroline, et al. Fixed-bed adsorption of toluene on high silica zeolites: experiments and mathematical modelling using LDF approximation and a multisite model[J]. Environmental Technology, 2015, 36(14): 1807-1818. |
25 | 岳旭, 王胜, 刘旭, 等. 不同吸附剂上动态吸附-脱附挥发性有机气体性能研究[J]. 燃料化学学报, 2020, 48(1): 120-128. |
YUE Xu, WANG Sheng, LIU Xu, et al. Dynamic adsorption and desorption of volatile organic compounds on different adsorbents[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 120-128. | |
26 | COSSERON A F, DAOU T J, TZANIS L, et al. Adsorption of volatile organic compounds in pure silica CHA,*BEA, MFI and STT-type zeolites[J]. Microporous and Mesoporous Materials, 2013, 173: 147-154. |
27 | CALERO S, GÓMEZ-ÁLVAREZ P. On the performance of FAU and MFI zeolites for the adsorptive removal of a series of volatile organic compounds from air using molecular simulation[J]. Physical Chemistry Chemical Physics, 2015, 17(39): 26451-26455. |
28 | NIGAR H, NAVASCUÉS N, DE LA IGLESIA O, et al. Removal of VOCs at trace concentration levels from humid air by microwave swing adsorption, kinetics and proper sorbent selection[J]. Separation and Purification Technology, 2015, 151: 193-200. |
29 | GUILLEMOT Marianne, MIJOIN Jérôme, MIGNARD Samuel, et al. Adsorption of tetrachloroethylene on cationic X and Y zeolites: influence of cation nature and of water vapor[J]. Industrial & Engineering Chemistry Research, 2007, 46(13): 4614-4620. |
30 | BEERDSEN Edith, SMIT Berend, CALERO Sofía. The influence of non-framework sodium cations on the adsorption of alkanes in MFI-and MOR-type zeolites[J]. The Journal of Physical Chemistry B, 2002, 106(41): 10659-10667. |
31 | ZENG Yongping, JU Shengui. Adsorption of thiophene and benzene in sodium-exchanged MFI-and MOR-type zeolites: a molecular simulation study[J]. Separation and Purification Technology, 2009, 67(1): 71-78. |
32 | DAI Jiqiang, ZHAO Cheng, HU Xiaomei, et al. One-pot synthesis of meso-microporous ZSM-5 and their excellent performance in VOCs adsorption/desorption[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(1): 78-87. |
33 | KABALAN Ihab, LEBEAU Benedicte, NOUALI Habiba, et al. New generation of zeolite materials for environmental applications[J]. The Journal of Physical Chemistry C, 2016, 120(5): 2688-2697. |
34 | XU Dandan, SWINDLEHURST Garrett R, WU Haohan, et al. On the synthesis and adsorption properties of single-unit-cell hierarchical zeolites made by rotational intergrowths[J]. Advanced Functional Materials, 2014, 24(2): 201-208. |
35 | ZHANG Ling, PENG Yuexin, ZHANG Juan, et al. Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials[J]. Chinese Journal of Catalysis, 2016, 37(6): 800-809. |
36 | 冯爱虎, 于洋, 于云, 等. 沸石分子筛及其负载型催化剂去除VOCs研究进展[J]. 化学学报, 2018, 76(10): 757-773. |
FENG Aihu, YU Yang, YU Yun, et al. Recent progress in the removal of volatile organic compounds by zeolite and its supported catalysts[J]. Acta Chimica Sinica, 2018, 76(10): 757-773. | |
37 | SELZER Carolin, WERNER Anjia, KASKEL Stenfan. Selective adsorption of propene over propane on hierarchical zeolite ZSM-58[J]. Industrial & Engineering Chemistry Research, 2018, 57(19): 6609-6617. |
38 | LI Chao, REN Yanqun, GOU Jinsheng, et al. Facile synthesis of mesostructured ZSM-5 zeolite with enhanced mass transport and catalytic performances[J]. Applied Surface Science, 2017, 392: 785-794. |
39 | KIM Nam Sun, NUMAN Muhammad, Sung Chan NAM, et al. Dynamic adsorption/desorption of p-xylene on nanomorphic MFI zeolites: effect of zeolite crystal thickness and mesopore architecture[J]. Journal of Hazardous Materials, 2021, 403: 123659. |
40 | FENG Aihu, YU Yang, MI Le, et al. Synthesis and characterization of hierarchical Y zeolites using NH4HF2 as dealumination agent[J]. Microporous and Mesoporous Materials, 2019, 280: 211-218. |
41 | FENG Aihu, YU Yang, MI Le, et al. Structural, textural and toluene adsorption properties of NH4HF2 and alkali modified USY zeolite[J]. Microporous and Mesoporous Materials, 2019, 290: 109646. |
42 | SCHMIDT Franz, PAASCH Silvia, BRUNNER Eike, et al. Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction[J]. Microporous and Mesoporous Materials, 2012, 164: 214-221. |
43 | YOON Suk Bon, KIM Jong-Yun, PARK Seung-Kyu K, et al. In situ recrystallization of silica template for synthesis of novel microporous ZSM-5/hollow mesoporous carbon composites[J]. Industrial & Engineering Chemistry Research, 2011, 50(13): 7998-8005. |
44 | MICHELS Nina-Luisa, MITCHELL Sharon, MILINA Maria, et al. Hierarchically structured zeolite bodies: assembling micro-, meso-, and macroporosity levels in complex materials with enhanced properties[J]. Advanced Functional Materials, 2012, 22(12): 2509-2518. |
45 | HUANG Shushu, DENG Wei, ZHANG Long, et al. Adsorptive properties in toluene removal over hierarchical zeolites[J]. Microporous and Mesoporous Materials, 2020,302: 110204. |
46 | SONG Aixia, MA Jinghong, XU Duo, et al. Adsorption and diffusion of xylene isomers on mesoporous beta zeolite[J]. Catalysts, 2015, 5(4): 2098-2114. |
47 | ZHU Zhiguo, XU Hao, JIANG Jingang, et al. Hydrophobic nanosized all-silica beta zeolite: efficient synthesis and adsorption application[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 27273-27283. |
48 | KABALAN I, LEBEAU B, FADLALLAH M B, et al. Hierarchical faujasite-type zeolite for molecular decontamination[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(9): 9318-9322. |
49 | MA Ye, WU Qinming, XIE Yiquan, et al. Recent advances in organotemplate-free synthesis of zeolites[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 25: 100363. |
50 | LI Yi, LI Lin, YU Jihong. Applications of zeolites in sustainable chemistry[J]. Chem., 2017, 3(6): 928-949. |
51 | LIU Bo, ZHOU Rongfei, YOGO Katsunori, et al. Preparation of CHA zeolite (chabazite) crystals and membranes without organic structural directing agents for CO2 separation[J]. Journal of Membrane Science, 2019, 573: 333-343. |
52 | GAO Kai, WANG Qing, DU Xuexun, et al. Efficient adsorption and eco-environmental oxidization of dimethylamine in Beta zeolite[J]. Microporous and Mesoporous Materials, 2019, 282: 219-227. |
53 | WANG Yeqing, DUAN Hongchang, TAN Zhengguo, et al. Illuminating solvent-free synthesis of zeolites[J]. Dalton Transactions, 2020, 49(21): 6939-6944. |
54 | WU Qinming, MA Ye, WANG Sai, et al. 110th anniversary: sustainable synthesis of zeolites: from fundamental research to industrial production[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11653-11658. |
55 | BHATIA Subhash, ABDULLAH Ahmad Zuhairi, WONG Cheng Teng. Adsorption of butyl acetate in air over silver-loaded Y and ZSM-5 zeolites: experimental and modelling studies[J]. Journal of Hazardous Materials, 2009, 163(1): 73-81. |
56 | YIN Tao, MENG Xuan, JIN Linpeng, et al. Prepared hydrophobic Y zeolite for adsorbing toluene in humid environment[J]. Microporous and Mesoporous Materials, 2020, 305: 110327. |
57 | BAL’ZHINIMAEV Bair S, PAUKSHTIS Eugenii A, TOKTAREV Alexander V, et al. Effect of water on toluene adsorption over high silica zeolites[J]. Microporous and Mesoporous Materials, 2019, 277: 70-77. |
58 | GÖKTUĞ AHUNBAY M, Oğuz KARVAN, Ayşe ERDEM-ŞENATALAR. MTBE adsorption and diffusion in silicalite-1[J]. Microporous and Mesoporous Materials, 2008, 115(1/2): 93-97. |
59 | Eren GÜVENÇ, AHUNBAY M. Göktuğ. Adsorption of methyl tertiary butyl ether and trichloroethylene in MFI-type zeolites[J]. The Journal of Physical Chemistry C, 2012, 116(41): 21836-21843. |
60 | HU Qin, LI Jinjun, QIAO Shizhang, et al. Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials[J]. Journal of Hazardous Materials, 2009, 164(2/3): 1205-1212. |
61 | WANG Shuang, BAI Pu, WEI Yingzhen, et al. Three-dimensional-printed core-shell structured MFI-type zeolite monoliths for volatile organic compound capture under humid conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 38955-38963. |
62 | HAN Xiaolong, WANG Lei, LI Jiding, et al. Tuning the hydrophobicity of ZSM-5 zeolites by surface silanization using alkyltrichlorosilane[J]. Applied Surface Science, 2011, 257(22): 9525-9531. |
63 | 张媛媛, 王笠力, 何丽, 等. 分子筛改性及其在高湿条件下对甲苯的吸附[J]. 环境工程学报, 2017, 11(10): 5509-5514. |
ZHANG Yuanyuan, WANG Lili, HE Li, et al. Modification of zeolite and adsorption of toluene under high humidity condition[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5509-5514. | |
64 | IVANOVA Irina I, KNYAZEVA Elena E. Micro-mesoporous materials obtained by zeoliterecrystallization: synthesis, characterization and catalytic applications[J]. Chemical Society Reviews, 2013, 42(9): 3671-3688. |
65 | LI Renna, CHONG Shijia, ALTAF Naveed, et al. Synthesis of ZSM-5/siliceous zeolite composites for improvement of hydrophobic adsorption of volatile organic compounds[J]. Frontiers in Chemistry, 2019, 7: 505. |
66 | DEVRIESE L I, COOLS L, AERTS A, et al. Shape selectivity in adsorption of n- and iso-alkanes on a zeotile-2 microporous/mesoporous hybrid and mesoporous MCM-48[J]. Advanced Functional Materials, 2007, 17(18): 3911-3917. |
67 | LI Renna, XUE Tianshan, LI Zhe, et al. Hierarchical structure ZSM-5/SBA-15 composite with improved hydrophobicity for adsorption-desorption behavior of toluene[J]. Chemical Engineering Journal, 2020, 392: 124861. |
68 | YU Wenbin, DENG Liangliang, YUAN Peng, et al. Preparation of hierarchically porous diatomite/MFI-type zeolite composites and their performance for benzene adsorption: the effects of desilication[J]. Chemical Engineering Journal, 2015, 270: 450-458. |
69 | YU Wenbin, YUAN Peng, LIU Dong, et al. Facile preparation of hierarchically porous diatomite/MFI-type zeolite composites and their performance of benzene adsorption: the effects of NaOH etching pretreatment[J]. Journal of Hazardous Materials, 2015, 285: 173-181. |
70 | YUAN Weiwei, YUAN Peng, LIU Dong, et al. A hierarchically porous diatomite/silicalite-1 composite for benzene adsorption/desorption fabricated via a facile pre-modification in situ synthesis route[J]. Chemical Engineering Journal, 2016, 294: 333-342. |
71 | AKHTAR Farid, ANDERSSON Linnéa, OGUNWUMI Steven, et al. Structuring adsorbents and catalysts by processing of porous powders[J]. Journal of the European Ceramic Society, 2014, 34(7): 1643-1666. |
72 | SHAMS K, MIRMOHAMMADI S J. Preparation of 5A zeolite monolith granular extrudates using kaolin: investigation of the effect of binder on sieving/adsorption properties using a mixture of linear and branched paraffin hydrocarbons[J]. Microporous and Mesoporous Materials, 2007, 106(1/2/3): 268-277. |
73 | BESSER Benjamin, TAJIRI Henrique Akira, MIKOLAJCZYK Gerd, et al. Hierarchical porous zeolite structures for pressure swing adsorption applications[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3277-3286. |
74 | KOPAYGORODSKY E M, GULIANTS V V, KRANTZ W B. Predictive dynamic model of single-stage ultra-rapid pressure swing adsorption[J]. AIChE Journal, 2004, 50(5): 953-962. |
75 | MEILLE Valérie. Review on methods to deposit catalysts on structured surfaces[J]. Applied Catalysis A: General, 2006, 315: 1-17. |
76 | YASUMORI Atsuo, YANAGIDA Sayaka, SAWADA Jun. Preparation of a titania/X-zeolite/porous glass composite photocatalyst using hydrothermal and drop coating processes[J]. Molecules, 2015, 20(2): 2349-2363. |
77 | 薛梦婷. NaY分子筛吸附剂的制备及其对挥发性有机物的吸附效果研究[D]. 苏州: 苏州科技大学, 2019. |
XUE Mengting. Preparation of NaY zeolite adsorbent and its adsorption effect on volatile organic compounds[D]. Suzhou:Suzhou University of Science and Technology, 2019. | |
78 | YUAN Weiwei, YUAN Peng, LIU Dong, et al. Novel hierarchically porous nanocomposites of diatomite-based ceramic monoliths coated with silicalite-1 nanoparticles for benzene adsorption[J]. Microporous and Mesoporous Materials, 2015, 206: 184-193. |
79 | FU Huangxi, YANG Qirong, ZHANG Lizhi. Effects of material properties on heat and mass transfer in honeycomb-type adsorbent wheels for total heat recovery[J]. Applied Thermal Engineering, 2017, 118: 345-356. |
80 | Minwhee CHO, KIM Jongjin, JEONG Jeongmin, et al. Excellent toluene removal via adsorption by honeycomb adsorbents under high temperature and humidity conditions[J]. Environmental Engineering Research, 2020, 25(2): 171-177. |
81 | YAMAUCHI Hisashi, KODAMA Akio, HIROSE Tsutomu, et al. Performance of VOC abatement by thermal swing honeycomb rotor adsorbers[J]. Industrial & Engineering Chemistry Research, 2007, 46(12): 4316-4322. |
82 | YANG Ji, CHEN Yufeng, CAO Limei, et al. Development and field-scale optimization of a honeycomb zeolite rotor concentrator/recuperative oxidizer for the abatement of volatile organic carbons from semiconductor industry[J]. Environmental Science & Technology, 2012, 46(1): 441-446. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[4] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[5] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[6] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[7] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[10] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[11] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[12] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[13] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[14] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[15] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |