Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (3): 1315-1324.DOI: 10.16085/j.issn.1000-6613.2020-0905
• Chemical processes and equipment • Previous Articles Next Articles
LIU Xuetao(), LI Minxia(), MA Yitai, YAO Liang, ZHAN Haomiao
Received:
2020-05-25
Online:
2021-03-17
Published:
2021-03-05
Contact:
LI Minxia
通讯作者:
李敏霞
作者简介:
刘雪涛(1996—),男,硕士研究生,研究方向为制冷与热泵节能技术。E-mail:基金资助:
CLC Number:
LIU Xuetao, LI Minxia, MA Yitai, YAO Liang, ZHAN Haomiao. Comparative analysis of energy efficiency and economy of CO2 transcritical heat pump system under heating condition[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1315-1324.
刘雪涛, 李敏霞, 马一太, 姚良, 詹浩淼. CO2跨临界热泵系统采暖工况下能效和经济对比分析[J]. 化工进展, 2021, 40(3): 1315-1324.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0905
参数 | 城市 | ||
---|---|---|---|
沈阳 | 北京 | 上海 | |
供暖面积/m2 | 100 | 100 | 100 |
HLET/℃ | 18 | 18 | 18 |
设计采暖室外温度/℃ | -16.9 | -7.6 | -0.3 |
建筑采暖热指标/W·m-2 | 69 | 61.8 | 58 |
参数 | 城市 | ||
---|---|---|---|
沈阳 | 北京 | 上海 | |
供暖面积/m2 | 100 | 100 | 100 |
HLET/℃ | 18 | 18 | 18 |
设计采暖室外温度/℃ | -16.9 | -7.6 | -0.3 |
建筑采暖热指标/W·m-2 | 69 | 61.8 | 58 |
设备 | 公式 |
---|---|
CO2压缩机 | Ccom(CO2)=17547W0.4488 |
R134a压缩机 | Ccom(R134a)=758.15W0.8728 |
套管式换热器 | CHE,tube-in-tube=1874.4W0.9835 |
翅片管式换热器 | CHE,fin-tube=331.7A0.9390 |
设备 | 公式 |
---|---|
CO2压缩机 | Ccom(CO2)=17547W0.4488 |
R134a压缩机 | Ccom(R134a)=758.15W0.8728 |
套管式换热器 | CHE,tube-in-tube=1874.4W0.9835 |
翅片管式换热器 | CHE,fin-tube=331.7A0.9390 |
换热器类型 | 参数 | 数值/mm |
---|---|---|
套管式换热器 | 外管外径 | 19 |
外管管壁厚度 | 2 | |
内管外径 | 7 | |
内管管壁厚度 | 1 | |
翅片管式换热器 | 管外径 | 7 |
管壁厚度 | 0.7 | |
翅片厚度 | 0.15 | |
翅片间距 | 2 | |
横向管间距 | 21 | |
纵向管间距 | 18.166 | |
迎风长度 | 400 | |
迎风宽度 | 170 |
换热器类型 | 参数 | 数值/mm |
---|---|---|
套管式换热器 | 外管外径 | 19 |
外管管壁厚度 | 2 | |
内管外径 | 7 | |
内管管壁厚度 | 1 | |
翅片管式换热器 | 管外径 | 7 |
管壁厚度 | 0.7 | |
翅片厚度 | 0.15 | |
翅片间距 | 2 | |
横向管间距 | 21 | |
纵向管间距 | 18.166 | |
迎风长度 | 400 | |
迎风宽度 | 170 |
类别 | 关联式 |
---|---|
CO2蒸发侧[ | |
CO2气冷侧[ | |
R134a蒸发侧[ | |
R134a冷凝侧[ | |
空气侧[ | |
单相工质流动[ |
类别 | 关联式 |
---|---|
CO2蒸发侧[ | |
CO2气冷侧[ | |
R134a蒸发侧[ | |
R134a冷凝侧[ | |
空气侧[ | |
单相工质流动[ |
1 | 李嵩. F-Gas新法规: 不可小觑的影响力——访欧盟委员会官员Cornelius Rhein [J]. 制冷与空调, 2014, 14(5): 12-14. |
LI Song. New F-Gas regulations: the influence that can’t be underestimated——Interview with European Commission official Cornelius Rhein[J]. Refrigeration and Air-conditioning, 2014, 14(5): 12-14. | |
2 | MANCINI F, MINETTO S, FORNASIERI E. Thermodynamic analysis and experimental investigation of a CO2 household heat pump dryer[J]. International Journal of Refrigeration, 2011, 34(4): 851-858. |
3 | SAIKAWA M, KOYAMA S. Thermodynamic analysis of vapor compression heat pump cycle for tap water heating and development of CO2 heat pump water heater for residential use[J]. Applied Thermal Engineering, 2016, 106: 1236-1243. |
4 | 俞彬彬, 王丹东, 向伟, 等. 跨临界CO2电动汽车空调系统性能分析[J]. 上海交通大学学报. 2019, 53(7): 866-872. |
YU Binbin, WANG Dandong, XIANG Wei, et al. Performance analysis of a trans-critical CO2 air conditioning system for electric vehicle[J]. Journal of Shanghai Jiaotong University, 2019, 53(7): 866-872. | |
5 | 胡余生, 刘雪涛, 李敏霞, 等. CO2跨临界热泵系统特性再分析[J]. 化工进展, 2020, 39(4): 1252-1258. |
HU Yusheng, LIU Xuetao, LI Minxia, et al. Reanalysis of characteristics of CO2 transcritical heat pump system[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1252-1258. | |
6 | 陈子丹, 罗会龙, 刘锦春, 等. 寒冷地区CO2空气源热泵供暖运行性能分析[J]. 化工学报, 2018, 69(9): 4030-4036. |
CHEN Zidan, LUO Huilong, LIU Jinchun, et al. Analysis of heating performance of CO2 air-source heat pump in cold region[J]. CIESC Journal, 2018, 69(9): 4030-4036. | |
7 | 李椿, 王志华, 王沣浩, 等. CO2热泵研究现状及展望[J]. 制冷学报, 2018, 39(5): 1-9. |
LI Chun, WANG Zhihua, WANG Fenghao, et al. Research status and prospects of the CO2 heat pump[J]. Journal of Refrigeration, 2018, 39(5): 1-9. | |
8 | 王国梁, 姜培学. 具有补气特性的跨临界二氧化碳制冷系统理论研究[J]. 清华大学学报(自然科学版), 2008(2): 224-227. |
WANG Guoliang, JIANG Peixue. Theoretical investigation of trans-critical carbon dioxide refrigeration system with a compressor economizer[J]. Journal of Tsinghua University (Science and Technology), 2008(2): 224-227. | |
9 | BAEK Changhyun, Jaehyeok HEO, JUNG Jongho, et al. Performance characteristics of a two-stage CO2 heat pump water heater adopting a sub-cooler vapor injection cycle at various operating conditions[J]. Energy, 2014, 77: 570-578. |
10 | 李敏霞, 王派, 刘雪涛, 等. 双级压缩中间补气CO2三级回热冷却热泵/制冷系统: CN201920311572.X[P]. 2020-01-21. |
LI Minxia, WANG Pai, LIU Xuetao, et al. A two-stage compression intermediate vapor supply CO2 regenerator cooling heat pump/refrigeration system: CN201920311572.X[P]. 2020-01-21. | |
11 | 李敏霞, 刘雪涛, 王派, 等. 一种喷气增焓CO2三回热冷却热泵/制冷系统: CN201920319082.4[P]. 2020-03-20. |
LI Minxia, LIU Xuetao, WANG Pai, et al. A enhanced vapor injection CO2 three-regenerator cooling heat pump/refrigeration system: CN201920319082.4[P]. 2020-03-20. | |
12 | 中国建筑科学研究院. 民用建筑供暖通风与空气调节设计规范: [S]. 北京: 中国建筑工业出版社, 2012. |
China Academy of Building Research. Design code for heating ventilation and air conditioning of civil buildings: [S]. Beijing: China Architecture & Building Press, 2012. | |
13 | European Committee for Standardization. Energy performance of buildings-overall energy use and definition of energy ratings: EN 15603-2008[S]. 2008. |
14 | 宋芳婷, 诸群飞, 吴如宏, 等. 中国建筑热环境分析专用气象数据集[C]//全国暖通空调制冷2006学术年会, 2006. |
SONG Fangting, ZHU Qunfei, WU Ruhong,et al. Meteorological data set for building thermal environment analysis of China[C]// National Academic Conference of HVAC and Refrigeration, 2006. | |
15 | DAI Baomin, QI Haifeng, LIU Shengchun, et al. Environmental and economical analyses of transcritical CO2 heat pump combined with direct dedicated mechanical subcooling (DMS) for space heating in China[J]. Energy Conversion and Management, 2019, 198: 111317. |
16 | FAZELPOUR F, MOROSUK T. Exergoeconomic analysis of carbon dioxide transcritical refrigeration machines[J]. International Journal of Refrigeration, 2014, 38: 128-139. |
17 | FANG Xiande. A new correlation of flow boiling heat transfer coefficients for carbon dioxide[J]. International Journal of Heat and Mass Transfer, 2013, 64: 802-807. |
18 | DANG Chaobin, HIHARA E. In-tube cooling heat transfer of supercritical carbon dioxide (): experimental measurement[J]. International Journal of Refrigeration. 2004, 27(7): 736-747. |
19 | MOHSENI S G, AKHAVAN-BEHABADI M A. Flow pattern visualization and heat transfer characteristics of R-134a during evaporation inside a smooth tube with different tube inclinations[J]. International Communications in Heat and Mass Transfer, 2014, 59: 39-45. |
20 | CAVALLINI A, ZECCHIN R. A dimensionless correlation for heat transfer in forced convection condensation[C]// International Heat Transfer Conference Digital Library. Begel House Inc., 1974. |
21 | MCQUISTON F C. Heat, mass and momentum transfer data for five plate-fin-tube heat transfer surfaces[J]. ASHRAE Transactions, 1978, 84(1): 266-293. |
22 | GNIELINSKI V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16(2): 359-368. |
23 | LIU Shengchun, LI Zheng, DAI Baomin, et al. Energetic, economic and environmental analysis of air source transcritical CO2 heat pump system for residential heating in China[J]. Applied Thermal Engineering, 2019, 148: 1425-1439. |
24 | WANG Dandong, YU Bingbing, HU Jichao, et al. Heating performance characteristics of CO2 heat pump system for electrical vehicle in a cold climate[J]. International Journal of Refrigeration, 2018, 85: 27-41. |
[1] | HUI Bo, HOU Hongyi, ZHANG Tao, CHE Shengwen. Drying characteristics of cylindrical annular pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 33-40. |
[2] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[3] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
[4] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[5] | WANG Zijie, LU Shuyin, ZHAO Ziliang, WANG Ning, GU Yujiong. Analysis of the influence of heating transformation on the performance of thermal power unit [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2325-2331. |
[6] | LU Nan, WANG Haimin, WANG Chuanwei, HU Xuebin, ZHOU Jiangang, LIU Wenqin, ZHAO Feng, MENG Guodong. Thermal characteristics and improved discharge parameters of NCM811 traction battery immersed preheated by insulating oil [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1299-1307. |
[7] | LIU Hongru, LIN Wensheng. Energy efficiency and carbon emission analysis of hydrogen transport chains based on liquid hydrogen and ammonia [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1291-1298. |
[8] | HU Yafei, FENG Ziping, TIAN Jiayao, HUANG Chong, SONG Wenji. Energy saving simulation and operation economic analysis of fuel driven non-electric heat pump systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1217-1227. |
[9] | YU Zhiguo. Intelligent control system of district heating based on fixed structure phase change heat storage module [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 168-176. |
[10] | GU Xubo, LIAO Chuanhua, WANG Changqing. Design optimization of supercritical water oxidation energy recovery system [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5094-5102. |
[11] | WANG Zijie, GU Yujiong, LIU Haochen, LI Changyun. Comparison and analysis of heat-power decoupling technologies for CHP units [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3564-3572. |
[12] | HU Yafei, LYU Jie, HAN Tao, SONG Wenji, FENG Ziping. Performance characteristics for heating of gas engine-driven heat pump system with waste heat recovery at high ambient temperature [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3553-3563. |
[13] | MA Youfu, WANG Ziwen, LYU Junfu. Simulation of off-design performance of an efficient power generation system with cold-ends optimization using hot air recirculation [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2340-2347. |
[14] | ZOU Pengcheng, JIN Guangyuan, LI Zhenfeng, SONG Chunfang, HAN Taibai, ZHU Yulian. Analysis of multi-physical field characteristics in a microwave reactor with a mode stirrer [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2301-2310. |
[15] | LIU Hongyi, YANG Guangxing, YU Hao. Recent advances of electromagnetic induction heating for sustainable catalytic technology [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1440-1452. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |