Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1440-1452.DOI: 10.16085/j.issn.1000-6613.2021-2228
• Chemical processes energy saving and emission reduction • Previous Articles Next Articles
LIU Hongyi(), YANG Guangxing, YU Hao()
Received:
2021-11-01
Revised:
2022-01-17
Online:
2022-03-28
Published:
2022-03-23
Contact:
YU Hao
通讯作者:
余皓
作者简介:
刘鸿益(1997—),男,硕士研究生,研究方向为能源催化。E-mail:基金资助:
CLC Number:
LIU Hongyi, YANG Guangxing, YU Hao. Recent advances of electromagnetic induction heating for sustainable catalytic technology[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1440-1452.
刘鸿益, 杨光星, 余皓. 电磁感应加热用于可持续催化技术的研究进展[J]. 化工进展, 2022, 41(3): 1440-1452.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2228
1 | IPCC. TAR climate change 2001: synthesis report[R]. https://www.ipcc.ch/report/ar3/syr/. |
2 | IPCC. Climate change 2021: the physical science basis[R]. https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/. |
3 | LUCÍA O, MAUSSION P, DEDE E J, et al. Induction heating technology and its applications: past developments, current technology, and future challenges[J]. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2509-2520. |
4 | HEDAYATNASAB Z, ABNISA F, DAUD W M A W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application[J]. Materials & Design, 2017, 123: 174-196. |
5 | LECLERCQ J, GIRAUD F, BIANCHI D, et al. Novel inductively-heated catalytic system for fast VOCs abatement, application to IPA in air[J]. Applied Catalysis B: Environmental, 2014, 146: 131-137. |
6 | CEYLAN S, FRIESE C, LAMMEL C, et al. Inductive heating for organic synthesis by using functionalized magnetic nanoparticles inside microreactors[J]. Angewandte Chemie International Edition, 2008, 47(46): 8950-8953. |
7 | DEATSCH A E, EVANS B A. Heating efficiency in magnetic nanoparticle hyperthermia[J]. Journal of Magnetism and Magnetic Materials, 2014, 354: 163-172. |
8 | RUTA S, CHANTRELL R, HOVORKA O. Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles[J]. Scientific Reports, 2015, 5: 9090. |
9 | APPINO C, BOTTAUSCIO O, DE LA BARRIERE O, et al. Computation of eddy current losses in soft magnetic composites[J]. IEEE Transactions on Magnetics, 2012, 48(11): 3470-3473. |
10 | SUTO M, HIROTA Y, MAMIYA H, et al. Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(10): 1493-1496. |
11 | HERGT R, DUTZ S, RÖDER M. Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2008, 20(38): 385214. |
12 | DUTZ S, HERGT R, MÜRBE J, et al. Hysteresis losses of magnetic nanoparticle powders in the single domain size range[J]. Journal of Magnetism and Magnetic Materials, 2007, 308(2): 305-312. |
13 | FREY N A, PENG Sheng, CHENG Kai, et al. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage[J]. Chemical Society Reviews, 2009, 38(9): 2532-2542. |
14 | LU Anhui, SALABAS E L, SCHÜTH F. Magnetic nanoparticles: synthesis, protection, functionalization, and application[J]. Angewandte Chemie International Edition, 2007, 46(8): 1222-1244. |
15 | MORNET S, VASSEUR S, GRASSET F, et al. Magnetic nanoparticle design for medical applications[J]. Progress in Solid State Chemistry, 2006, 34(2/3/4): 237-247. |
16 | KIRSCHNING A, KUPRACZ L, HARTWIG J. New synthetic opportunities in miniaturized flow reactors with inductive heating[J]. Chemistry Letters, 2012, 41(6): 562-570. |
17 | JORDAN A, WUST P, SCHOLZ R, et al. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro [J]. International Journal of Hyperthermia, 1996, 12(6): 705-722. |
18 | BAKOGLIDIS K D, SIMEONIDIS K, SAKELLARI D, et al. Size-dependent mechanisms in AC magnetic hyperthermia response of iron-oxide nanoparticles[J]. IEEE Transactions on Magnetics, 2012, 48(4): 1320-1323. |
19 | ROSENSWEIG R E. Heating magnetic fluid with alternating magnetic field[J]. Journal of Magnetism and Magnetic Materials, 2002, 252: 370-374. |
20 | BORDET A, LACROIX L M, FAZZINI P F, et al. Magnetically induced continuous CO2 hydrogenation using composite iron carbide nanoparticles of exceptionally high heating power[J]. Angewandte Chemie International Edition, 2016, 55(51): 15894-15898. |
21 | ASENSIO J M, MIGUEL A B, FAZZINI P F, et al. Hydrodeoxygenation using magnetic induction: high-temperature heterogeneous catalysis in solution[J]. Angewandte Chemie International Edition, 2019, 58(33): 11306-11310. |
22 | GROMMÉ C S, WRIGHT T L, PECK D L. Magnetic properties and oxidation of iron-titanium oxide minerals in Alae and Makaopuhi Lava Lakes, Hawaii[J]. Journal of Geophysical Research Atmospheres, 1969, 74(22): 5277-5293. |
23 | DE LA PRESA P, LUENGO Y, MULTIGNER M, et al. Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles[J]. The Journal of Physical Chemistry C, 2012, 116(48): 25602-25610. |
24 | LIU Xiaoli, ZHANG Yifan, WANG Yanyun, et al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy[J]. Theranostics, 2020, 10(8): 3793-3815. |
25 | GARAIO E, SANDRE O, COLLANTES J M, et al. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry)[J]. Nanotechnology, 2015, 26(1): 015704. |
26 | ALMIND M R, VENDELBO S B, HANSEN M F, et al. Improving performance of induction-heated steam methane reforming[J]. Catalysis Today, 2020, 342: 13-20. |
27 | POLSHETTIWAR V, LUQUE R, FIHRI A, et al. Magnetically recoverable nanocatalysts[J]. Chemical Reviews, 2011, 111(5): 3036-3075. |
28 | WEGNER J, CEYLAN S, FRIESE C, et al. Inductively heated oxides inside microreactors-facile oxidations under flow conditions[J]. European Journal of Organic Chemistry, 2010(23): 4372-4375. |
29 | KIRSCHNING A, CEYLAN S, KLANDE T, et al. Chemical synthesis with inductively heated copper flow reactors[J]. Synlett, 2010, 2010(13): 2009-2013. |
30 | CEYLAN S, COUTABLE L, WEGNER J, et al. Inductive heating with magnetic materials inside flow reactors[J]. Chemistry-A European Journal, 2011, 17(6): 1884-1893. |
31 | KUPRACZ L, HARTWIG J, WEGNER J, et al. Multistep flow synthesis of vinyl azides and their use in the copper-catalyzed Huisgen-type cycloaddition under inductive-heating conditions[J]. Beilstein Journal of Organic Chemistry, 2011, 7: 1441-1448. |
32 | CHAUDHURI S R, HARTWIG J, KUPRACZ L, et al. Oxidations of allylic and benzylic alcohols under inductively-heated flow conditions with gold-doped superparamagnetic nanostructured particles as catalyst and oxygen as oxidant[J]. Advanced Synthesis & Catalysis, 2014, 356(17): 3530-3538. |
33 | HOULDING T K, TCHABANENKO K, RAHMAN M T, et al. Direct amide formation using radiofrequency heating[J]. Organic & Biomolecular Chemistry, 2013, 11(25): 4171-4177. |
34 | LIU Yawen, CHERKASOV N, GAO Pengzhao, et al. The enhancement of direct amide synthesis reaction rate over TiO2@SiO2@NiFe2O4 magnetic catalysts in the continuous flow under radiofrequency heating[J]. Journal of Catalysis, 2017, 355: 120-130. |
35 | LIU Yawen, GAO Pengzhao, CHERKASOV N, et al. Direct amide synthesis over core-shell TiO2@NiFe2O4 catalysts in a continuous flow radiofrequency-heated reactor[J]. RSC Advances, 2016, 6(103): 100997-101007. |
36 | MUSTIELES MARIN I, DE MASI D, LACROIX L M, et al. Hydrodeoxygenation and hydrogenolysis of biomass-based materials using FeNi catalysts and magnetic induction[J]. Green Chemistry, 2021, 23(5): 2025-2036. |
37 | TSAI W T, LEE M K, CHANG Y M. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor[J]. Journal of Analytical and Applied Pyrolysis, 2006, 76(1/2): 230-237. |
38 | TSAI W T, LEE M K, CHANG Y M. Fast pyrolysis of rice husk: product yields and compositions[J]. Bioresource Technology, 2007, 98(1): 22-28. |
39 | TSAI W T, CHANG J H, HSIEN K J, et al. Production of pyrolytic liquids from industrial sewage sludges in an induction-heating reactor[J]. Bioresource Technology, 2009, 100(1): 406-412. |
40 | LEE M K, TSAI W T, TSAI Y L, et al. Pyrolysis of Napier grass in an induction-heating reactor[J]. Journal of Analytical and Applied Pyrolysis, 2010, 88(2): 110-116. |
41 | MULEY P D, HENKEL C, ABDOLLAHI K K, et al. Pyrolysis and catalytic upgrading of pinewood sawdust using an induction heating reactor[J]. Energy & Fuels, 2015, 29(11): 7375-7385. |
42 | MULEY P D, HENKEL C, ABDOLLAHI K K, et al. A critical comparison of pyrolysis of cellulose, lignin, and pine sawdust using an induction heating reactor[J]. Energy Conversion and Management, 2016, 117: 273-280. |
43 | HENKEL C, MULEY P D, ABDOLLAHI K K, et al. Pyrolysis of energy cane bagasse and invasive Chinese tallow tree (Triadica sebifera L.) biomass in an inductively heated reactor[J]. Energy Conversion and Management, 2016, 109: 175-183. |
44 | ABU-LABAN M, MULEY P D, HAYES D J, et al. Ex-situ up-conversion of biomass pyrolysis bio-oil vapors using Pt/Al2O3 nanostructured catalyst synergistically heated with steel balls via induction[J]. Catalysis Today, 2017, 291: 3-12. |
45 | DANIEL D J, ELLISON C R, BURSAVICH J, et al. An evaluative comparison of lignocellulosic pyrolysis products derived from various parts of Populus deltoides trees and Panicum virgatum grass in an inductively heated reactor[J]. Energy Conversion and Management, 2018, 171: 710-720. |
46 | PÉREZ-CAMACHO M N, ABU-DAHRIEH J, ROONEY D, et al. Biogas reforming using renewable wind energy and induction heating[J]. Catalysis Today, 2015, 242: 129-138. |
47 | MORTENSEN P M, ENGBÆK J S, VENDELBO S B, et al. Direct hysteresis heating of catalytically active Ni-Co nanoparticles as steam reforming catalyst[J]. Industrial & Engineering Chemistry Research, 2017, 56(47): 14006-14013. |
48 | VINUM M G, ALMIND M R, ENGBAEK J S, et al. Dual-function cobalt-nickel nanoparticles tailored for high-temperature induction-heated steam methane reforming[J]. Angewandte Chemie International Edition, 2018, 57(33): 10569-10573. |
49 | SANNA A, HALL M R, MAROTO-VALER M. Post-processing pathways in carbon capture and storage by mineral carbonation (CCSM) towards the introduction of carbon neutral materials[J]. Energy & Environmental Science, 2012, 5(7): 7781. |
50 | GRASA G S, ABANADES J C. CO2 capture capacity of CaO in long series of carbonation/calcination cycles[J]. Industrial & Engineering Chemistry Research, 2006, 45(26): 8846-8851. |
51 | SOTENKO M, FERNÁNDEZ J, HU G N, et al. Performance of novel CaO-based sorbents in high temperature CO2 capture under RF heating[J]. Chemical Engineering and Processing: Process Intensification, 2017, 122: 487-492. |
52 | FERNÁNDEZ J, SOTENKO M, DEREVSCHIKOV V, et al. A radiofrequency heated reactor system for post-combustion carbon capture[J]. Chemical Engineering and Processing: Process Intensification, 2016, 108: 17-26. |
53 | MEFFRE A, MEHDAOUI B, CONNORD V, et al. Complex nano-objects displaying both magnetic and catalytic properties: a proof of concept for magnetically induced heterogeneous catalysis[J]. Nano Letters, 2015, 15(5): 3241-3248. |
54 | KALE S S, ASENSIO J M, ESTRADER M, et al. Iron carbide or iron carbide/cobalt nanoparticles for magnetically-induced CO2 hydrogenation over Ni/SiRAlO x catalysts[J]. Catalysis Science & Technology, 2019, 9(10): 2601-2607. |
55 | DE MASI D, ASENSIO J M, FAZZINI P F, et al. Engineering iron-nickel nanoparticles for magnetically induced CO2 methanation in continuous flow[J]. Angewandte Chemie International Edition, 2020, 59(15): 6187-6191. |
56 | MARTÍNEZ-PRIETO L M, MARBAIX J, ASENSIO J M, et al. Ultrastable magnetic nanoparticles encapsulated in carbon for magnetically induced catalysis[J]. ACS Applied Nano Materials, 2020, 3(7): 7076-7087. |
57 | MARBAIX J, KERROUX P, MONTASTRUC L, et al. CO2 methanation activated by magnetic heating: life cycle assessment and perspectives for successful renewable energy storage[J]. The International Journal of Life Cycle Assessment, 2020, 25(4): 733-743. |
58 | AASBERG-PETERSEN K, HANSEN J H BAK, CHRISTENSEN T S, et al. Technologies for large-scale gas conversion[J]. Applied Catalysis A: General, 2001, 221(1/2): 379-387. |
59 | KONNOV A A, ZHU Jianning, BROMLY J H, et al. Noncatalytic partial oxidation of methane into syngas over a wide temperature range[J]. Combustion Science and Technology, 2004, 176(7): 1093-1116. |
60 | RASMUSSEN C L, JAKOBSEN J G, GLARBORG P. Experimental measurements and kinetic modeling of CH4/O2 and CH4/C2H6/O2 conversion at high pressure[J]. International Journal of Chemical Kinetics, 2008, 40(12): 778-807. |
61 | ZHOU Xinwen, CHEN Caixia, WANG Fuchen. Multi-dimensional modeling of non-catalytic partial oxidation of natural gas in a high pressure reformer[J]. International Journal of Hydrogen Energy, 2010, 35(4): 1620-1629. |
62 | LI C E, BURKE N, GERDES K, et al. The undiluted, non-catalytic partial oxidation of methane in a flow tube reactor-An experimental study using indirect induction heating[J]. Fuel, 2013, 109: 409-416. |
63 | LI C E, KUAN B, LEE W J, et al. The non-catalytic partial oxidation of methane in a flow tube reactor using indirect induction heating-An experimental and kinetic modelling study[J]. Chemical Engineering Science, 2018, 187: 189-199. |
64 | NIETHER C, FAURE S, BORDET A, et al. Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles[J]. Nature Energy, 2018, 3(6): 476-483. |
65 | GALLO-CORDOVA A, CASTRO J J, WINKLER E L, et al. Improving degradation of real wastewaters with self-heating magnetic nanocatalysts[J]. Journal of Cleaner Production, 2021, 308: 127385. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[3] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[4] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[5] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[6] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[7] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[8] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[9] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[10] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[11] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[12] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[13] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[14] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[15] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |