1 |
BROWN A J. On an acetic ferment which forms cellulose[J]. Chem. Soc., 1886, 49: 432-439.
|
2 |
付莉. 细菌纤维素的研究综述[J].食品研究与开发, 2004, 25(2): 18-20.
|
|
FU Li. A review of bacterial cellulose[J]. Food Research and Development, 2004, 25(2): 18-20.
|
3 |
胡佳琪, 汪思维, 曾志涛, 等.细菌纤维素在食品和面膜中的应用研究进展[J].科技与创新, 2016(6): 2-3.
|
|
HU Jiaqi, WANG Siwei, ZENG Zhitao, et al. Application of bacterial cellulose in food and mask[J]. Technology and Innovation, 2016(6): 2-3.
|
4 |
陈竞, 冯蕾, 杨新平, 等. 细菌纤维素的制备和应用研究进展[J]. 纤维素科学与技术, 2014, 22(2): 58-63.
|
|
CHEN Jing, FENG Lei, YANG Xinping, et al.Research progress of preparation and application of bacterial cellulose[J]. Cellulose Science and Technology, 2014, 22(2): 58-63.
|
5 |
周毓, 刘艳. 细菌纤维素研究进展[J].广州化工, 2007, 35(2): 8-9.
|
|
ZHOU Yu, LIU Yan. Research progress of bacterial cellulose[J]. Guangzhou Chemical Industry, 2007, 35(2): 8-9.
|
6 |
马承铸,顾真荣.细菌纤维素生物理化性能和商业用途[J]. 上海农业学报, 2001, 17(4): 93-98.
|
|
MA Chengzhu, GU Zhenrong. Biophysicochemical properties and commercial use of bacterial cellulose[J]. Shanghai Journal of Agriculture, 2001, 17(4): 93-98.
|
7 |
YAMANAKA S, SUGIYAMA J. Structural modification of bacterial cellulose[J]. Cellulose, 2000, 7(3): 213-225.
|
8 |
BI J C, LIU S X, LI C F, et al. Morphology and structure characterization of bacterial celluloses produced by different strains in agitated culture[J]. Journal of Applied Microbiology, 2014, 117(5): 1305-1311.
|
9 |
FUJIWARA T, KOMODA K, SAKURAI N, et al. The c-di-GMP recognition mechanism of the PilZ domain of bacterial cellulose synthase subunit A[J]. Biochemical and Biophysical Research Communications, 2013, 431(4): 802-807.
|
10 |
SERRA D O, RICHTER A M, HENGGE R. Cellulose as an architectural element in spatially structured Escherichia coli biofilms[J]. Journal of Bacteriology, 2013, 195(24): 5540-5554.
|
11 |
WHITE A P, WELJIE A M, APEL D, et al. A global metabolic shift is linked to Salmonella multicellular development[J]. PLoS One, 2010, 5: e11814.
|
12 |
施庆珊, 冯劲, 冯静,等. 一株产细菌纤维素菌株的分离和初步鉴定[J]. 发酵科技通讯, 2009, 38(2): 11-14.
|
|
SHI Qingshan, FENG Jin, FENG Jing, et al. Isolation and preliminary identification of a bacterial cellulose strain[J]. Fermentation Technology Newsletter, 2009, 38(2): 11-14.
|
13 |
周胜虎, 薛齐佳, 刘传凤, 等. 细菌纤维素高产菌株的筛选和初步鉴定[J]. 湖北农业科学, 2013, 52(15): 3514-3517.
|
|
ZHOU Shenghu, XUE Qijia, LIU Chuanfeng, et al. Screening and preliminary identification of high yield strains of bacterial cellulose[J]. Hubei Agricultural Science, 2013, 52(15): 3514-3517.
|
14 |
朱宏阳, 姚俊, 冯珊, 等.1株产细菌纤维素芽胞杆菌的分离及鉴定[J]. 生物加工过程, 2014, 12(5): 80-84.
|
|
ZHU Hongyang, YAO Jun, FENG Shan, et al. Isolation and identification of bacterial bacillus cellulose[J]. Bioprocessing Process, 2014, 12(5): 80-84.
|
15 |
REVIN V, LIYASKINA E, NAZARKINA M, et al. Cost-effective production of bacterial cellulose using acidic food industry by-products[J]. Brazilian Journal of Microbiology, 2018, 49(1): 151-159.
|
16 |
WU J M, LIU R H. Cost-effective production of bacterial cellulose in static cultures using distillery wastewater[J]. Biosci. Bioeng., 2013, 115(3): 284-290.
|
17 |
JAIN S, GUPTA R. Development of low cost nutritional beverage from whey[J]. Environ. Sci .Toxicol. Food Technol., 2013(5): 73-88.
|
18 |
CARREIRA P, MENDES J A S, TROVATTI E, et al. Utilization of residues from agro-forest industries in the production of high value bacterial cellulose[J]. Bioresour. Technol., 2011, 102:7354-7360.
|
19 |
KOSE R, SUNAGAWA N, YOSHIDA M, et al. One-step production of nanofibrillated bacterial cellulose (NFBC) from waste glycerol using Gluconacetobacter intermedius NEDO-01[J]. Cellulose, 2013(20): 2971-2979.
|
20 |
袁金霞, 王婷, 黄显南, 等.细菌纤维素在造纸工业中的应用研究进展[J]. 纸和造纸, 2016, 35(7): 42-46.
|
|
YUAN Jinxia, WANG Ting, HUANG Xiannan, et al. Application of bacterial cellulose in paper industry[J]. Paper and Paper, 2016, 35(7): 42-46.
|
21 |
李昊燃.红茶菌中细菌纤维素产生菌的筛选鉴定及发酵条件优化[D]. 开封: 河南大学, 2016.
|
|
LI Haoran. Screening and identification of bacterial cellulose producing bacteria in black tea and optimization of fermentation conditions[D]. Kaifeng: Henan University, 2016.
|
22 |
李国辉.细菌纤维素纤维复合材料的制备及其应用研究[D]. 无锡: 江南大学, 2017.
|
|
LI Guohui. Preparation and application of bacterial cellulose fiber composite materials[D]. Wuxi: Jiangnan University, 2017.
|
23 |
RÖMLING U, GALPERIN M Y. Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions[J]. HHS Public Access, 2015 23(9): 545-557.
|
24 |
DENG Y, NIVEDITA N, XIAO C W, et al. Identification and characterization of non-cellulose-producing mutants of Gluconacetobacter hansenii generated by Tn5 transposon mutagenesis[J]. Bacteriology, 2013, 195(22): 5072-5083.
|
25 |
NAOKI S, TAKAAKI F, TAKANORI Y, et al. Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum[J]. Biosci. Bioeng., 2013, 115: 607-612.
|
26 |
NAKAI T, SUGANO Y, SHODA M, et al. Formation of highly twisted ribbons in a carboxymethyl cellulase gene-disrupted strain of a cellulose-producing bacterium[J]. Bacteriology, 2013, 195: 958-964.
|
27 |
UMEDA Y, HIRANO A, ISHIBASHI M, et al. Cloning of cellulose synthase genes from Acetobacter xylinum JCM 7664: implication of a novel set of cellulose synthase genes[J]. DNA Res., 1999, 6: 109-115.
|
28 |
RÖMLING U. Molecular biology of cellulose production in bacteria[J]. Res. Microbiol., 2002, 153: 205-212.
|
29 |
ZOGAJ X, NIMTZ M, ROHDE M, et al. The multicellular morphotypes of salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix[J]. Mol. Microbiol., 2001, 39: 1452-1463.
|
30 |
QUERE B L, GHIGO J M. BcsQ is an essential component of the Escherichia coli cellulose biosynthesis apparatus that localizes at the bacterial cell pole[J]. Mol. Microbiol., 2009, 72: 724-740.
|
31 |
SOLANO C, GARCIA B, VALLE J, et al. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose[J]. Mol. Microbiol., 2002, 43(3): 793-808.
|
32 |
SERRA D O, RICHTER A M, HENGGE R. Cellulose as an architectural element in spatially structured Escherichia coli biofilms[J]. Bacteriology, 2013, 195(24): 5540-5554.
|
33 |
NORA A, MARTIN L, STEFAN H, et al. Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv.trifolii[J]. Microbiology, 1999, 145(5): 1253-1262.
|
34 |
LIGHTFOOT R, MATTHYSSE A G, WHITE S, et al. Genes required for cellulose synthesis in Agrobacterium tumefaciens[J]. Bacteriology, 1995, 177(4): 1069-1075.
|
35 |
KRALL L, FUQUA C, MARRY M, et al. The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens[J]. Mol. Plant Microbe. Interact., 2005, 18: 1002-1010.
|
36 |
HU S Q, GAO Y G, TAJIMA K, et al. Structure of bacterial cellulose synthase subunit D octamer with four inner passageways[J]. Proc. Natl. Acad. Sci. USA, 2010, 107(42): 17957-17961.
|
37 |
MEHTA K, PFEFFER S, BROWN R M, et al. Characterization of an acsD disruption mutant provides additional evidence for the hierarchical cell-directed self-assembly of cellulose in Gluconacetobacter xylinus[J]. Cellulose, 2015, 22(1): 119-137.
|
38 |
GARCIA B, LATASA C, SOLANO C, et al. Role of the GGDEF protein family in salmonella cellulose biosynthesis and biofilm formation[J]. Mol. Microbiol., 2004, 54(1): 264-277.
|
39 |
RÖMLING U. Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae[J]. Cell Mol. Life Sci., 2005(62): 1234-1246.
|
40 |
MAYER R, TAL R, SAPIR S, et al. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes[J]. Bacteriology, 1998, 180(17): 4416-4425.
|
41 |
RÖMLING U, ROHDE M, OLSEN A, et al. The checkpoint of multicellular and aggregative behaviour in salmonella typhimurium regulates at least two independent pathways[J]. Mol. Microbiol., 2000, 36(1): 10-23.
|
42 |
REDA S, GHIGO J M. A CsgD-independent pathway for cellulose production and biofilm formation in Escherichia coli[J]. Bacteriology, 2006, 188(8): 3073-3087.
|