Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (S2): 251-261.DOI: 10.16085/j.issn.1000-6613.2020-0895
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
Lijie CHENG1(), Ningbo GAO1(), Hua CHU2, Cui QUAN1, Liheng ZHANG2, Xinggang LI2
Received:
2020-05-25
Online:
2020-11-17
Published:
2020-11-20
Contact:
Ningbo GAO
程丽杰1(), 高宁博1(), 楚华2, 全翠1, 张力恒2, 李兴刚2
通讯作者:
高宁博
作者简介:
程丽杰(1994—),女,博士研究生,研究方向为有机废弃物生物处理。E-mail:CLC Number:
Lijie CHENG, Ningbo GAO, Hua CHU, Cui QUAN, Liheng ZHANG, Xinggang LI. Metabolism and application of perchlorate reducing bacteria in microbial reduction of perchlorate: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 251-261.
程丽杰, 高宁博, 楚华, 全翠, 张力恒, 李兴刚. 高氯酸盐还原菌的代谢过程及应用研究进展[J]. 化工进展, 2020, 39(S2): 251-261.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0895
分类 | 高氯酸盐还原菌 | 菌种来源 | 电子供体 | pH | 温度 | 高氯酸盐去除率/% | 年份 |
---|---|---|---|---|---|---|---|
① Clostridia | Sporomusa sp. An4 | 俄罗斯地下气体储存库[ | 甲醇 | 7.0 | 37 | 100 | 2010 |
② Clostridia | Moorella perchloratireducens sp. nov. An10 | 俄罗斯地下气体储存库[ | 甲醇 | 7.0 | 55 | 100 | 2008 |
③ Bacillus Vibrio SalinovibrioStaphylococcus Nesiotobacter | BBCOL | 哥伦比亚加勒比地区高盐土壤[ | 琼脂 | 6.5~12.0 | 37 | 10~25 | 2019 |
④ Azospira sp. KJ | Azospira sp. KJ | 高氯酸盐降解生物反应床[ | 乙酸、丙酸、琥珀酸 | 8.0 | 30 | 100 | 2018 |
⑤ Dechloromonas spp. | Dechloromonas spp. PBR | 土壤[ | — | 7.4 | 23±1 | 100 | 2011 |
⑥ Dysgonomonas | PRB | 长春市河流沉积物[ | — | 7.0 | — | 98.93 | 2018 |
⑦ Sulfurovum | T-driven PCRB | 石家庄桥西区污水处理厂活性污泥[ | S2O32- | 7.5 | 40 | 98 | 2017 |
⑧ Dechloromonas sp. Thauera sp. Azoarcus sp. | Dechloromonas sp. Thauera sp. Azoarcus sp. | 印度Thiruvananthapuram 区污水处理厂厌氧污泥[ | 乙酸 | 7.0 | 32 | 99 | 2015 |
⑨ Dechloromonas sp. | Dechloromonas sp.JD15 | — | 7.0 | 25 | 80~90 | 2010 | |
⑩ Marinobacter vinifirmus sp. | Marinobacter vinifirmus sp. P4B1 | 混合富集培养物[ | 乙酸 | — | 22 | 100 | 2013 |
? Azospira sp. KJ | Azospira sp. KJ | 高氯酸盐降解生物反应床[ | 乙酸 | 8.0 | 30 | 100 | 2018 |
? Dechloromonas sp. Dechlorosoma sp. | MPRB | 济南污水处理厂活性污泥[ | 乙酸 | 7.0 | 30 | 100 | 2018 |
? Rhodococcus sp. | Rhodococcus sp. YSPW03 | 韩国韩州市政污水处理厂厌氧消化污泥[ | 乙酸 | 7.0 | 35±5 | 100 | 2015 |
? — | 高氯酸盐还原菌 | 森林公园土壤[ | 树皮 | — | 38±1 | 100 | 2013 |
? Serratia sp. | Serratia sp. Serratia marcescens NIIST5 | 实验室间歇式生物反应器[ | 乙酸盐 | — | 30 | 87 | 2013 |
?— | 生物膜群落中PBR | 厌氧甲烷氧化协同反硝化污泥[ | 甲烷 | 7.0±0.2 | 29±1 | 0~100 | 2015 |
? Dechloromonas sp. | Dechloromonas sp. | 上海曲阳污水处理厂厌氧消化污泥[ | 乙酸钠 | 6.85 | 35 | 100 | 2016 |
分类 | 高氯酸盐还原菌 | 菌种来源 | 电子供体 | pH | 温度 | 高氯酸盐去除率/% | 年份 |
---|---|---|---|---|---|---|---|
① Clostridia | Sporomusa sp. An4 | 俄罗斯地下气体储存库[ | 甲醇 | 7.0 | 37 | 100 | 2010 |
② Clostridia | Moorella perchloratireducens sp. nov. An10 | 俄罗斯地下气体储存库[ | 甲醇 | 7.0 | 55 | 100 | 2008 |
③ Bacillus Vibrio SalinovibrioStaphylococcus Nesiotobacter | BBCOL | 哥伦比亚加勒比地区高盐土壤[ | 琼脂 | 6.5~12.0 | 37 | 10~25 | 2019 |
④ Azospira sp. KJ | Azospira sp. KJ | 高氯酸盐降解生物反应床[ | 乙酸、丙酸、琥珀酸 | 8.0 | 30 | 100 | 2018 |
⑤ Dechloromonas spp. | Dechloromonas spp. PBR | 土壤[ | — | 7.4 | 23±1 | 100 | 2011 |
⑥ Dysgonomonas | PRB | 长春市河流沉积物[ | — | 7.0 | — | 98.93 | 2018 |
⑦ Sulfurovum | T-driven PCRB | 石家庄桥西区污水处理厂活性污泥[ | S2O32- | 7.5 | 40 | 98 | 2017 |
⑧ Dechloromonas sp. Thauera sp. Azoarcus sp. | Dechloromonas sp. Thauera sp. Azoarcus sp. | 印度Thiruvananthapuram 区污水处理厂厌氧污泥[ | 乙酸 | 7.0 | 32 | 99 | 2015 |
⑨ Dechloromonas sp. | Dechloromonas sp.JD15 | — | 7.0 | 25 | 80~90 | 2010 | |
⑩ Marinobacter vinifirmus sp. | Marinobacter vinifirmus sp. P4B1 | 混合富集培养物[ | 乙酸 | — | 22 | 100 | 2013 |
? Azospira sp. KJ | Azospira sp. KJ | 高氯酸盐降解生物反应床[ | 乙酸 | 8.0 | 30 | 100 | 2018 |
? Dechloromonas sp. Dechlorosoma sp. | MPRB | 济南污水处理厂活性污泥[ | 乙酸 | 7.0 | 30 | 100 | 2018 |
? Rhodococcus sp. | Rhodococcus sp. YSPW03 | 韩国韩州市政污水处理厂厌氧消化污泥[ | 乙酸 | 7.0 | 35±5 | 100 | 2015 |
? — | 高氯酸盐还原菌 | 森林公园土壤[ | 树皮 | — | 38±1 | 100 | 2013 |
? Serratia sp. | Serratia sp. Serratia marcescens NIIST5 | 实验室间歇式生物反应器[ | 乙酸盐 | — | 30 | 87 | 2013 |
?— | 生物膜群落中PBR | 厌氧甲烷氧化协同反硝化污泥[ | 甲烷 | 7.0±0.2 | 29±1 | 0~100 | 2015 |
? Dechloromonas sp. | Dechloromonas sp. | 上海曲阳污水处理厂厌氧消化污泥[ | 乙酸钠 | 6.85 | 35 | 100 | 2016 |
高氯酸盐还原菌 | 引物 | 序列(5'-3') |
---|---|---|
Moorella perchloratireducens sp. nov. An10 [ | — | ACCTAATACGACTACTATAGGGAGAGTTTGATCCTGGCTCAG ATTGTAAAACGACGGCCAGTGGTTACCTTGTTACGACTT |
Dechloromonas spp. PBR [ | pcrA320 pcrA598 | GCGCCCACCACTACATGTAYGGNCC GGTGGTCGCCGTACCARTCRAA |
T-driven PCRB [ | 341F 805R | CCCTACACGACGCTCTTCCGATCTGCCTACGGGNGGCWGCAG GACTGGAGTTCCTTGGCACCCGAGAATTCCAGACTACHVGGGTATCTAATCC |
生物膜群落中高氯酸盐还原菌 [ | 320F 589R | GCGCCCACCACTACATGTAYGGNCC GGTGGTCGCCGTACCARTCRAA |
— [ | 341F 518R | CCTACGGGAGGCAGCAG ATTACCGCGGCTGCTGG |
Clostridium sp.andRhodocyclaceae [ | 1070F 1392R | ATGGCTGTCGTCAGCT ACGGGCGGTGTGTAC |
Dechlorospirillum anomalous strain WD+Dechlorisoma suillus strain PS [ | 8F 1525R | AGAGTTTGATCCTGGCTCAG AGAGTTTGATCCTGGCTCAG |
— [ | UCD-238F UCD-646R | T(C/T)GA(A/C/G)AA(A/G)CA(C/T)AAGGA(A/T/C)AA(A/C/G)GT GAGTGGTA(A/C/G)A(A/G)(C/T)TT(A/C/G)CG(C/T)TT |
高氯酸盐还原菌 | 引物 | 序列(5'-3') |
---|---|---|
Moorella perchloratireducens sp. nov. An10 [ | — | ACCTAATACGACTACTATAGGGAGAGTTTGATCCTGGCTCAG ATTGTAAAACGACGGCCAGTGGTTACCTTGTTACGACTT |
Dechloromonas spp. PBR [ | pcrA320 pcrA598 | GCGCCCACCACTACATGTAYGGNCC GGTGGTCGCCGTACCARTCRAA |
T-driven PCRB [ | 341F 805R | CCCTACACGACGCTCTTCCGATCTGCCTACGGGNGGCWGCAG GACTGGAGTTCCTTGGCACCCGAGAATTCCAGACTACHVGGGTATCTAATCC |
生物膜群落中高氯酸盐还原菌 [ | 320F 589R | GCGCCCACCACTACATGTAYGGNCC GGTGGTCGCCGTACCARTCRAA |
— [ | 341F 518R | CCTACGGGAGGCAGCAG ATTACCGCGGCTGCTGG |
Clostridium sp.andRhodocyclaceae [ | 1070F 1392R | ATGGCTGTCGTCAGCT ACGGGCGGTGTGTAC |
Dechlorospirillum anomalous strain WD+Dechlorisoma suillus strain PS [ | 8F 1525R | AGAGTTTGATCCTGGCTCAG AGAGTTTGATCCTGGCTCAG |
— [ | UCD-238F UCD-646R | T(C/T)GA(A/C/G)AA(A/G)CA(C/T)AAGGA(A/T/C)AA(A/C/G)GT GAGTGGTA(A/C/G)A(A/G)(C/T)TT(A/C/G)CG(C/T)TT |
高氯酸盐还原菌 | 可利用的电子供体 |
---|---|
CKB[ | 乙酸、丙酸、丁酸、乳酸、琥珀酸、富马酸、苹果酸或酵母提取物、二价铁、硫化物、腐殖质类似物2,6-蒽醌二磺酸盐的还原形式 |
GR-1[ | 乙酸、丙酸、苹果酸、琥珀酸和乳酸 |
Azospira sp. KJ[ | 乙酸、丙酸、琥珀酸 |
高氯酸盐还原菌[ | 树皮 |
PRBC[ | 乙酸、乙醇、酵母提取物、蔗糖、葡萄糖 |
乳酸富集的高氯酸盐还原菌[ | 乙酸、氢气、乳酸 |
CIRB[ | 简单的有机酸、氢气、乙醇、芳香烃、己糖、还原性腐殖质、可溶性和不溶性铁和硫化氢 |
Dechlorosoma sp. perclace[ | 淀粉、马铃薯皮 |
高氯酸盐还原菌 | 可利用的电子供体 |
---|---|
CKB[ | 乙酸、丙酸、丁酸、乳酸、琥珀酸、富马酸、苹果酸或酵母提取物、二价铁、硫化物、腐殖质类似物2,6-蒽醌二磺酸盐的还原形式 |
GR-1[ | 乙酸、丙酸、苹果酸、琥珀酸和乳酸 |
Azospira sp. KJ[ | 乙酸、丙酸、琥珀酸 |
高氯酸盐还原菌[ | 树皮 |
PRBC[ | 乙酸、乙醇、酵母提取物、蔗糖、葡萄糖 |
乳酸富集的高氯酸盐还原菌[ | 乙酸、氢气、乳酸 |
CIRB[ | 简单的有机酸、氢气、乙醇、芳香烃、己糖、还原性腐殖质、可溶性和不溶性铁和硫化氢 |
Dechlorosoma sp. perclace[ | 淀粉、马铃薯皮 |
1 | URBANSKY E. Perchlorate as an environmental contaminant[J]. Environmental Science and Pollution Research International, 2002, 9:187-192. |
2 | GULLICK R W, LECHEVALLIER M W, BARHORST T S. Occurrence of perchlorate in drinking water sources[J]. American Water Works Association, 2001, 93: 66-77. |
3 | YANG Q, YAO F, ZHONG Y, et al. Catalytic and electrocatalytic reduction of perchlorate in water-a review[J]. Chemical Engineering Journal, 2016, 306: 1081-1091. |
4 | WILKIN R, FINE D, BURNETT N, et al. Perchlorate behavior in a municipal lake following fireworks displays[J]. Environmental Science and Technology, 2007, 41(11): 3966-3971. |
5 | XIE T, YANG Q, WINKLER M K H, et al. Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor: performance and microbial community structure[J]. Journal of Hazardous Materials, 2018, 357(5): 244-252. |
6 | BRADFORD C M, RINCHARD J, CARR J A, et al. Perchlorate affects thyroid function in eastern mosquitofish(Gambusia holbrooki) at environmentally relevant concentrations[J]. Environmental Science and Technology, 2005, 39(14): 5190-5195. |
7 | THEODORAKIS C, RINCHARD J, ANDERSON T, et al. Perchlorate in fish from a contaminated site in East-Central Texas[J]. Environmental Pollution, 2006, 139(1): 59-69. |
8 | SRINIVASAN A, VIRARAGHAVAN T. Perchlorate: health effects and technologies for its removal from water resources[J]. International Journal of Environmental Research and Public Health, 2009, 6: 1418-1442. |
9 | YE L, YOU H, YAO J, et al. Seasonal variation and factors influencing perchlorate in water, snow, soil and corns in Northeastern China[J]. Chemosphere, 2013, 90: 2493-2498. |
10 | SONG W, ZHOU W, XU X, et al. Treatment of dissolved perchlorate by adsorption-microbial reduction[J]. Chemical Engineering Journal, 2015, 279: 522-529. |
11 | ISOBE T, OGAWA S, SUGIMOTO R, et al. Perchlorate contamination of groundwater from fireworks manufacturing area in South India[J]. Environmental Monitoring and Assessment, 2012, 185(7): 5627-2637. |
12 | TOMASSINI F. Trends and sources of perchlorate in arctic snow[J]. Environmental Science and Technology, 2010, 44(2): 588-592. |
13 | GAO M, WANG S, REN Y, et al. Simultaneous removal of perchlorate and nitrate in a combined reactor of sulfur autotrophy and electrochemical hydrogen autotrophy[J]. Chemical Engineering Journal, 2016, 284: 1008-1016. |
14 | VEGA M, NERENBERG R, VARGAS I T. Perchlorate contamination in Chile: legacy, challenges, and potential solutions[J]. Environmental Research, 2018, 164: 316-326. |
15 | BRUCE R, ACHENBACH L, COATES J. Reduction of (per)chlorate by a novel organism isolated from paper mill waste[J]. Environmental Microbiology, 1999, 1: 319-329. |
16 | WU J, UNZ R F, ZHANG H, et al. Persistence of perchlorate and the relative numbers of perchlorate- and chlorate-respiring microorganisms in natural waters, soils, and wastewater[J]. Bioremediation Journal, 2001, 5(2): 119-130. |
17 | COATES J, MICHAELIDOU U, BRUCE R, et al. Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria[J]. Applied and Environmental Microbiology, 1999, 65(12): 5234-5241. |
18 | WOLTERINK A, KIM S, MUUSSE M, et al. Dechloromonas hortensis sp nov and strain ASK-1, two novel (per)chlorate-reducing bacteria, and taxonomic description of strain GR-1[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(5): 2063-2068. |
19 | CARLSTRÖM C I, LOUTEY D E, WANG O, et al. Phenotypic and genotypic description of sedimenticola selenatireducens strain CUZ, a marine (per)chlorate-respiring gammaproteobacterium, and its close relative the chlorate-respiring sedimenticola strain NSS[J]. Applied and Environmental Microbiology, 2015, 81(8): 2717-2726. |
20 | POLK J, ONEWOKAE C, GUARINI W, et al. Army success story: ex-situ biological treatment of perchlorate‐contaminated groundwater[J]. Federal Facilities Environmental Journal, 2010, 13(2): 85-94. |
21 | SORIAL G A. The perchlorate dilemma in drinking water[J]. Journal of Environmental Engineering, 2004, 130(1): 1-2. |
22 | AHN S C, CHA D K, KIM B J, et al. Detoxification of PAX-21 ammunitions wastewater by zero-valent iron for microbial reduction of perchlorate[J]. Journal of Hazardous Materials, 2011, 192(2): 909-914. |
23 | 邱华. 高氯酸盐污染地下水生物修复研究[D]. 长春: 吉林大学, 2015. |
QIU Hua. The research of bioremediatian of perchlorate-contaminated groundwater[D]. Changchun: Jilin University, 2015. | |
24 | VLADIMIR NIKOLAEVICH K, VITALY IVANOVICH R, SERGEI IVANOVICH K, et al. Process for purification of industrial waste waters from perchlorates and chlorates: US485371[P].1976-03-09. |
25 | OOSTERKAMP M J, VEUSKENS T, FLÁVIA T S, et al. Genome analysis and physiological comparison of alicycliphilus denitrificans strains BC and K601T[J]. PLoS ONE, 2013, 8(6): e66971. |
26 | MELNYK R A, ENGELBREKTSON A, CLARK I C, et al. Identification of a perchlorate reduction genomic island with novel regulatory and metabolic genes[J]. Applied and Environmental Microbiology, 2011, 77(20): 7401-7404. |
27 | BENDER K S, SHANG C, CHAKRABORTY R, et al. Identification, characterization, and classification of genes encoding perchlorate reductase[J]. Journal of Bacteriology, 2005, 187(15): 5090-5096. |
28 | 方齐乐, 陈宝梁. 高氯酸盐污染土壤及地下水的植物-微生物修复研究进展[J]. 环境科学学报, 2011, 31(8): 1569-1579. |
FANG Qile, CHEN Baoling. A review of phyto-microbial remediation of perchlorate-contaminated soil and groundwater[J]. Acta Scientiae Circumstantiae, 2011, 31(8): 1569-1579. | |
29 | CLARK I C, MELNYK R A, ENGELBREKTSON A, et al. Structure and evolution of chlorate reduction composite transposons[J]. MBio, 2013, 4(4): e00379-13. |
30 | ARTHUR F W, EMILE S, PETER-LEON H, et al. Characterization of the chlorate reductase from pseudomonas chloritidismutans[J]. Journal of Bacteriology, 2003, 185(10): 3210-3213. |
31 | XU J, SONG Y, MIN B, et al. Microbial degradation of perchlorate: principles and applications[J]. Environmental Engineering Science, 2003, 20(5): 405-422. |
32 | 谢宇轩. 高氯酸盐及其与硝酸盐氮、氨氮混合污染的微生物降解研究[D]. 北京: 中国地质大学, 2014. |
XIE Yuxuan. Bioremediation of perchlorate and mixed contamination of perchlorate, nitrate-nitrogen and ammonia-nitrogen [D]. Beijing: China Universityof Geosciences, 2014. | |
33 | NILSSON T, ROVA M, SMEDJA B A. Microbial metabolism of oxochlorates: a bioenergetic perspective[J]. Biochimica et Biophysica Acta, 2013, 1827: 189-197. |
34 | DUDLEY M, SALAMONE A, NERENBERG R. Kinetics of a chlorate-accumulating, perchlorate-reducing bacterium[J]. Water Research, 2008, 42(10): 2403-2410. |
35 | RIKKEN G B, KROON A G M, GINKEL C G VAN. Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation[J]. Applied Microbiology and Biotechnology, 1996, 45(3): 420-426. |
36 | MLYNEK G, SJOBLOM B, KOSTAN J, et al. Unexpected diversity of chlorite dismutases: a catalytically efficient dimeric enzyme from nitrobacter winogradskyi[J]. Journal of Bacteriology, 2011, 193(10): 2408-2417. |
37 | BACKLUND A S, BOHLIN J, GUSTAVSSON N,et al. Periplasmic c cytochromes and chlorate reduction in Ideonella dechloratans[J]. Applied Environmental Microbiology, 2009,75(8): 2439-2445. |
38 | LIEBENSTEINER M G, OOSTERKAMP M, STAMS A. Microbial respiration with chlorine oxyanions: diversity and physiological and biochemical properties of chlorate- and perchlorate-reducing microorganisms[J]. Annals of the New York Academy of Sciences, 2015, 1365(1): 59-72. |
39 | LIEBENSTEINER M G, STAMS A J M, LOMANS B P. (Per)chlorate reduction at high temperature: physiological study of archaeoglobus fulgidus and potential implications for novel souring mitigation strategies[J]. International Biodeterioration and Biodegradation, 2014, 96: 216-222. |
40 | YE L, YOU H, YAO J, et al. Water treatment technologies for perchlorate: a review[J]. Desalination, 2012, 298: 1-12. |
41 | BALK M, MEHBOOB F, GELDER A H V, et al. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage[J]. Applied Microbiology and Biotechnology, 2010, 88(2): 595-603. |
42 | BALK M, Gelder T VAN, WEELINK S A, et al. (Per)chlorate reduction by the thermophilic bacterium Moorella perchloratireducens sp. nov., isolated from underground gas storage[J]. Applied and Environmental Microbiology, 2008, 74(2): 403-409. |
43 | HEINZ J, WAAJEN A C, AIRO A, et al. Bacterial growth in chloride and perchlorate brines: halotolerances and salt stress responses of planococcus halocryophilus[J]. Astrobiology, 2020, 20(2): 1377-1387. |
44 | ACEVEDO B R, BERTEL S A, ALONSO J, et al. Perchlorate-reducing bacteria from hypersaline soils of the Colombian Caribbean[J]. International Journal of Microbiology, 2019(4): 1-13. |
45 | XU X, GAO B, JIN B, et al. Study of microbial perchlorate reduction: considering of multiple pH, electron acceptors and donors[J]. Journal of Hazardous Materials, 2015, 285: 228-235. |
46 | MAMIE N I, MERCY J, YANG K., et al. Effect of nitrate, acetate, and hydrogen on native perchlorate-reducing microbial communities and their activity in vadose soil[J]. Fems Microbiology Ecology, 2011, 76(2): 278-288. |
47 | LIU N, QIN X, AN Y, et al.Effects of multi-electron acceptor coexistence system on perchlorate biodegradation and microbial community variation[J]. Water Science and Technology: Water Supply, 2018, 18(3/4): 1428-1436. |
48 | ZHANG C, GUO J, LIAN J, et al. Characteristics of electron transport chain and affecting factors for thiosulfate-driven perchlorate reduction[J]. Chemosphere, 2017, 185: 539-547. |
49 | ANUPAMA V N, PRAJEESH P V G, ANJU S, et al. Diversity of bacteria, archaea and protozoa in a perchlorate treating bioreactor[J]. Microbiological Research, 2015, 177: 8-14. |
50 | 彭银仙, 吴春笃, 宁德刚, 等. 一株高氯酸盐降解菌的分离及特征[J]. 江苏大学学报(自然科学版), 2010, 31(2): 107-111. |
PENG Yinxian, WU Chundu, NING Degang, et al. Isolation and characteristics of perchlorate degradation bacterial strains[J].Journal of Jiangsu University Natural Science Edition), 2010, 31(2): 107-111. | |
51 | XIAO Y, ROBERTS D J. Kinetics analysis of a salt-tolerant perchlorate-reducing bacterium: effects of sodium, magnesium, and nitrate[J]. Environmental Science and Technology, 2013, 47(15): 8666-8673. |
52 | SHANG Y, WANG Z, XU X, et al. Bio-reduction of free and laden perchlorate by the pure and mixed perchlorate reducing bacteria: considering the pH and coexisting nitrate[J]. Chemosphere, 2018, 205: 475-483. |
53 | LEE S H, HWANG J H, KABRA A N, et al. Perchlorate reduction from a highly concentrated aqueous solution by bacterium Rhodococcus sp. YSPW03[J]. Environmental Science and Pollution Research, 2015, 22(23): 18839-18848. |
54 | 王蕊, 刘菲, 陈楠, 等.树皮支持的厌氧生物法去除地下水中的高氯酸盐[J], 环境科学, 2013, 34(7): 2704-2710. |
WANG Rui, LIU Fei, CHEN Nan. et al. Perchlorate removal from underground water by anaerobic biological reduction with bark[J]. Environmental Science, 2013, 34(7): 2704-2710. | |
55 | AUPAMA V N, PRAJEESH G P V, BHASKARAN K. Perchlorate reduction by an isolated Serratia marcescens strain under high salt and extreme pH [J]. Fems Microbiology Letters, 2013, 339: 117-121. |
56 | LUO Y, CHEN R, WEN L, et al. Complete perchlorate reduction using methane as the sole electron donor and carbon source[J]. Environmental Science and Technology, 2015, 49(4): 2341-2349. |
57 | 吴敏, 王帅锋, 高乃云, 等. 生物法还原高浓度高氯酸盐动力学及反应条件的优化[J].中南大学学报(自然科学版), 2016, 47(11): 3958-3964. |
WU Min, WANG Shuaifeng, GAO Naiyun, et al. Kinetics of biological high-concentration perchlorate reduction and optimization of reaction conditions[J]. Journal of Central South University (Science and Technology), 2016, 47(11): 3958-3964. | |
58 | ATIKOVIC E. Anaerobic treatment of army ammunition production wastewater containing perchlorate and RDX[D]. Cincinnati: University of Cincinnati, 2006. |
59 | CHUNG J, SHIN S, OH J. Influence of nitrate, sulfate and operational parameters on the bioreduction of perchlorate using an up‐flow packed bed reactor at high salinity[J]. Environmental Technology, 2010, 31: 693-704. |
60 | MICHAELIDOU U, ACHENBACH L A, COATES J D. Isolation and characterisation of two novel (per)chlorate-reducing bacteria from swine waste lagoons[M]. Urbansky E T (Ed.). New York: NY Perchlorate in the environment, Kluwer Academic/Plenum Publishers, 2000: 271-283. |
61 | BENDER K S, RICE M R, FUGATE W H, et al. Metabolic primers for detection of (per)chlorate-reducing bacteria in the environment and phylogenetic analysis of cld gene sequences[J]. Applied and Environmental Microbiology, 2004, 70(9): 5651-5658. |
62 | COATES J D, JACKSON W A. In Situ bioremediation of perchlorate in groundwater[M]. New York: Springer, 2009: 29-53. |
63 | WALLER A S, COX E E, EDWARDS E A. Perchlorate-reducing microorganisms isolated from contaminated sites[J]. Environmental Microbiology, 2004, 6(5): 517-527. |
64 | NOR S J, LEE S H, CHO K S, et al. Microbial treatment of high-strength perchlorate wastewater[J]. Bioresource Technology, 2011, 102(2): 835-841. |
65 | SHROUT J D, PARKIN G F. Influence of electron donor, oxygen, and redox potential on bacterial perchlorate degradation[J]. Water Research, 2006, 40(6): 1191-1199. |
66 | CHAUDHURI S K, O'CONNOR S M, GUSTAVSON R L, et al. Environmental factors that control microbial perchlorate reduction[J]. Applied and Environmental Microbiology, 2002, 68(9): 4425-4430. |
67 | OKEKE B C, FRANKENBERGER W T. Use of starch and potato peel waste for perchlorate bioreduction in water[J]. Science of the Total Environment, 2005, 347(1/2/3): 35-45. |
68 | XU J, TRIMBLE J J, STEINBERG L, et al. Chlorate and nitrate reduction pathways are separately induced in the perchlorate-respiring bacterium Dechlorosoma sp. KJ and the chlorate-respiring bacterium Pseudomonas sp. PDA[J]. Water Research, 2004, 38(3): 673-680. |
69 | MA H, BONNIE N A, YU M, et al. Biological treatment of ammonium perchlorate-contaminated wastewater: a review[J]. Journal of Water Reuse and Desalination, 2015, 6(1): 82-107. |
70 | TAN K, ANDERSON T, JACKSON W. Degradation kinetics of perchlorate in sediments and soils[J]. Water, Air and Soil Pollution, 2004, 151(1/2/3/4): 245-259. |
71 | BARDIYA N, BAE J. Role of citrobacter amalonaticus and citrobacter farmeri in dissimilatory perchlorate reduction[J]. Journal of Basic Microbiology, 2004, 44(2): 88-97. |
72 | SHETE A, MUKHOPADHYAYA P, ACHARYA A, et al. Aerobic reduction of perchlorate by bacteria isolated in Kerala, South India[J]. Journal of Applied Genetics, 2008, 49(4): 425-431. |
73 | ATTAWAY H, SMITH M. Reduction of perchlorate by an anaerobic enrichment culture[J]. Journal of Industrial Microbiology, 1993, 12(6): 408-412. |
74 | BROWN J, SNOEYINK V, RASKIN L, et al. The sensitivity of fixed-bed biological perchlorate removal to changes in operating conditions and water quality characteristics[J]. Water Research, 2003, 37(1): 206-214. |
75 | WANG C, LIPPINCOTT L, MENG X. Kinetics of biological perchlorate reduction and pH effect[J]. Journal of Hazardous Materials, 2008, 153(1/2): 663-669. |
76 | WU D, HE P, XU X, et.al. The effect of various reaction parameters on bioremediation of perchlorate-contaminated water[J]. Journal of Hazardous Materials, 2008, 150(2): 419-423. |
77 | OKEKE B C, GIBLIN T, FRANKENBERGER W T. Reduction of perchlorate and nitrate by salt tolerant bacteria[J]. Environmental Pollution, 2002, 118(3): 357-363. |
78 | LIN X, ROBERTS D J, HIREMATH T, et al. Divalent cation addition (Ca2+or Mg2+) stabilizes biological treatment of perchlorate and nitrate in ion-exchange spent brine[J]. Environmental Engineering Science, 2007, 24(6): 725-735. |
79 | BARDIYA N, BAE J H. Dissimilatory perchlorate reduction: a review[J]. Microbiological Research, 2011, 166(4): 237-254. |
80 | AHN S C. Removal of perchlorate in ammunition wastewater by zero-valent iron and perchlorate respiring bacteria[D]. Newark: University of Delaware, Dissertations and Theses Gradworks, 2008. |
81 | HATZINGER P B, DIEBOLD J, YATES A C, et al. Field demonstration of in situ perchlorate bioremediation in groundwater[M]. New York: Springer, 2006: 311-341. |
82 | YIN P, GUO J, XIAO S, et al. Rapid of cultivation dissimilatory perchlorate reducing granular sludge and characterization of the granulation process[J]. Bioresource Technology, 2019, 276: 260-268. |
83 | LIU W, LIAN J, GUO J, et al. Perchlorate reduction by anaerobic granular sludge under different operation strategies performance, extracellular polymeric substances and microbial community[J]. Bioresource Technology Reports, 2019, 8: 100312. |
84 | 谭心. 改性农作物秸秆吸附联用生物还原去除水体中高氯酸根的效果研究[D]. 济南: 山东大学, 2013. |
TAN Xin. Removal of perchlorate by modified wheat straw adsorption and bio-reduction[D]. Jinan: Shandong University, 2013. | |
85 | LEHMAN S.G, BADRUZZAMAN M, ADHAM S,et al. Perchlorate and nitrate treatment by ion exchange integrated with biological brine treatment[J]. Water Research, 2008, 42(45): 969-976. |
86 | 王悦静. 硫自养与电化学氢自养协同去除饮用水中高氯酸盐的研究[D]. 青岛: 中国海洋大学, 2012. |
WANG Yuejing. The study on biological perchlorate reduction of drinking water by combined rocess of sulfur autotrophic and electrochemical hydrogen Autotrophy[D]. Qingdao: Ocean University of China, 2012. |
[1] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[2] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[3] | SUN Xudong, ZHAO Yuying, LI Shirui, WANG Qi, LI Xiaojian, ZHANG Bo. Textual quantitative analysis on China’s local hydrogen energy development policies [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478-3488. |
[4] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
[5] | JIN Yong, CHENG Yi, BAI Dingrong, ZHANG Chenxi, WEI Fei. Fluidization research and development in China [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2761-2780. |
[6] | ZHU Zixuan, CHEN Junjiang, ZHANG Xingxing, LI Xiang, LIU Wenru, WU Peng. Research advances on novel wastewater biological nitrogen removal technology by partial denitrification coupled with Anammox [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2091-2100. |
[7] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
[8] | LI Jianxiong, GENG Shuang, HU Shujian, ZHOU Ming. Research progress on functional structure design and application of liposome delivery system [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2003-2012. |
[9] | WU Heng, LI Yinlong, YAN Gang, XIONG Tong, ZHANG Hao, TAO Kui. Vapor-liquid separation technology in refrigeration/heat pump systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1129-1142. |
[10] | CHEN Bangfu, OUYANG Ping, LI Yuhan, DUAN Youyu, DONG Fan. Application of ZnSn(OH)6-based nanomaterials in environmental photocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 756-764. |
[11] | SU Jingzhen, ZHAN Jian. Research progress of microplastic removal from water environment by biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5445-5458. |
[12] | PAN Yuelei, CHENG Xudong, YAN Mingyuan, HE Pan, ZHANG Heping. Silica aerogel and its application in the field of thermal insulation [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 297-309. |
[13] | ZHOU Chen, FU Jie, ZHANG Guojun. National Natural Science Foundation of China's fund applications and grants in 2022: a review based on Chemical Engineering & Industrial Chemistry [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 553-558. |
[14] | HUANG Yuefeng, MA Lisha, ZHANG Lili, WANG Zhiguo. Research progress on functional application of lignocellulose composite biomass film materials [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4840-4854. |
[15] | ZHU Xuedan, YAO Yali, MA Lili, WANG Jiaxin, YANG Jie, PENG Lei, HE Jinmei, QU Mengnan. Progress in preparation and application of superhydrophobic materials based on polyvinyl chloride [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3676-3688. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |