Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (1): 173-182.DOI: 10.16085/j.issn.1000-6613.2020-0534
• Energy processes and technology • Previous Articles Next Articles
Xiaoli TAN(), Mei AN, Xintong GUO, Qingjie GUO(), Jianping KUANG
Received:
2020-04-07
Online:
2021-01-12
Published:
2021-01-05
Contact:
Qingjie GUO
通讯作者:
郭庆杰
作者简介:
谭晓莉(1995—),女,硕士研究生,研究方向为煤炭清洁利用,E-mail:基金资助:
CLC Number:
Xiaoli TAN, Mei AN, Xintong GUO, Qingjie GUO, Jianping KUANG. Reaction characteristics and mechanism of pressurized chemical looping gasification of coal char[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 173-182.
谭晓莉, 安梅, 郭欣桐, 郭庆杰, 匡建平. 煤焦加压化学链气化反应特性和机理[J]. 化工进展, 2021, 40(1): 173-182.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0534
样品 | w1①/% | w2②/% | LHV /MJ·kg-1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | St | Oc | ||
NM | 0.73 | 11.85 | 4.27 | 83.88 | 85.15 | 0.98 | 1.13 | 0.89 | 0.01 | 30.14 |
样品 | w1①/% | w2②/% | LHV /MJ·kg-1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | St | Oc | ||
NM | 0.73 | 11.85 | 4.27 | 83.88 | 85.15 | 0.98 | 1.13 | 0.89 | 0.01 | 30.14 |
序号 | 温度 /℃ | 系统总压 /MPa | 水蒸气分压 /MPa | Ar /L·min-1 | 水蒸气 /L·min-1 |
---|---|---|---|---|---|
1 | 920 | 0.80 | 0.32 | 1.20 | 0.80 |
2 | 920 | 0.80 | 0.40 | 1.00 | 1.00 |
3 | 920 | 0.80 | 0.48 | 0.80 | 1.20 |
4 | 920 | 0.80 | 0.56 | 0.60 | 1.40 |
5 | 920 | 0.46 | 0.32 | 0.35 | 0.80 |
6 | 920 | 0.53 | 0.32 | 0.53 | 0.80 |
7 | 920 | 0.64 | 0.32 | 0.80 | 0.80 |
8 | 900 | 0.80 | 0.40 | 1.00 | 1.00 |
9 | 880 | 0.80 | 0.40 | 1.00 | 1.00 |
10 | 860 | 0.80 | 0.40 | 1.00 | 1.00 |
序号 | 温度 /℃ | 系统总压 /MPa | 水蒸气分压 /MPa | Ar /L·min-1 | 水蒸气 /L·min-1 |
---|---|---|---|---|---|
1 | 920 | 0.80 | 0.32 | 1.20 | 0.80 |
2 | 920 | 0.80 | 0.40 | 1.00 | 1.00 |
3 | 920 | 0.80 | 0.48 | 0.80 | 1.20 |
4 | 920 | 0.80 | 0.56 | 0.60 | 1.40 |
5 | 920 | 0.46 | 0.32 | 0.35 | 0.80 |
6 | 920 | 0.53 | 0.32 | 0.53 | 0.80 |
7 | 920 | 0.64 | 0.32 | 0.80 | 0.80 |
8 | 900 | 0.80 | 0.40 | 1.00 | 1.00 |
9 | 880 | 0.80 | 0.40 | 1.00 | 1.00 |
10 | 860 | 0.80 | 0.40 | 1.00 | 1.00 |
系统总压 /MPa | 组分/% | 产率 /% | η /% | |||
---|---|---|---|---|---|---|
CO2 | CO | H2 | CH4 | |||
0.46 | 40.88 | 4.59 | 52.60 | 1.92 | 59.12 | 53.08 |
0.53 | 42.06 | 4.47 | 51.29 | 2.16 | 57.93 | 59.76 |
0.64 | 42.48 | 4.41 | 50.76 | 2.36 | 57.52 | 65.58 |
0.80 | 42.92 | 4.41 | 50.26 | 2.40 | 57.07 | 71.48 |
系统总压 /MPa | 组分/% | 产率 /% | η /% | |||
---|---|---|---|---|---|---|
CO2 | CO | H2 | CH4 | |||
0.46 | 40.88 | 4.59 | 52.60 | 1.92 | 59.12 | 53.08 |
0.53 | 42.06 | 4.47 | 51.29 | 2.16 | 57.93 | 59.76 |
0.64 | 42.48 | 4.41 | 50.76 | 2.36 | 57.52 | 65.58 |
0.80 | 42.92 | 4.41 | 50.26 | 2.40 | 57.07 | 71.48 |
水蒸气分压 /MPa | 组合/% | 产率/% | η/% | |||
---|---|---|---|---|---|---|
CO2 | CO | H2 | CH4 | |||
0.32 | 43.36 | 4.33 | 49.97 | 2.35 | 56.64 | 68.48 |
0.40 | 43.89 | 3.75 | 50.93 | 1.43 | 56.10 | 67.48 |
0.48 | 44.24 | 3.10 | 51.66 | 1.00 | 55.76 | 67.35 |
0.56 | 44.25 | 2.61 | 52.30 | 0.84 | 55.74 | 67.34 |
水蒸气分压 /MPa | 组合/% | 产率/% | η/% | |||
---|---|---|---|---|---|---|
CO2 | CO | H2 | CH4 | |||
0.32 | 43.36 | 4.33 | 49.97 | 2.35 | 56.64 | 68.48 |
0.40 | 43.89 | 3.75 | 50.93 | 1.43 | 56.10 | 67.48 |
0.48 | 44.24 | 3.10 | 51.66 | 1.00 | 55.76 | 67.35 |
0.56 | 44.25 | 2.61 | 52.30 | 0.84 | 55.74 | 67.34 |
取样条件 | 压力 /MPa | 比表面积 /m2·g-1 | 孔体积 /mL·g-1 | 反应速率 /min-1 |
---|---|---|---|---|
系统总压 | 0.46 | 347.51 | 0.63 | 0.0159 |
0.53 | 392.09 | 0.57 | 0.0210 | |
0.64 | 493.91 | 0.76 | 0.0239 | |
0.80 | 334.86 | 0.59 | 0.0309 | |
水蒸气分压 | 0.32 | 334.86 | 0.59 | 0.0309 |
0.40 | 420.12 | 0.65 | 0.0331 | |
0.48 | 526.15 | 0.71 | 0.0317 | |
0.56 | 332.26 | 0.51 | 0.0285 |
取样条件 | 压力 /MPa | 比表面积 /m2·g-1 | 孔体积 /mL·g-1 | 反应速率 /min-1 |
---|---|---|---|---|
系统总压 | 0.46 | 347.51 | 0.63 | 0.0159 |
0.53 | 392.09 | 0.57 | 0.0210 | |
0.64 | 493.91 | 0.76 | 0.0239 | |
0.80 | 334.86 | 0.59 | 0.0309 | |
水蒸气分压 | 0.32 | 334.86 | 0.59 | 0.0309 |
0.40 | 420.12 | 0.65 | 0.0331 | |
0.48 | 526.15 | 0.71 | 0.0317 | |
0.56 | 332.26 | 0.51 | 0.0285 |
模型 | R2 | |||
---|---|---|---|---|
860℃ | 880℃ | 900℃ | 920℃ | |
VRM | 0.9968 | 0.9977 | 0.9943 | 0.9793 |
SCM | 0.9899 | 0.9936 | 0.9982 | 0.9990 |
RPM | 0.9817 | 0.9891 | 0.9950 | 0.9959 |
模型 | R2 | |||
---|---|---|---|---|
860℃ | 880℃ | 900℃ | 920℃ | |
VRM | 0.9968 | 0.9977 | 0.9943 | 0.9793 |
SCM | 0.9899 | 0.9936 | 0.9982 | 0.9990 |
RPM | 0.9817 | 0.9891 | 0.9950 | 0.9959 |
1 | ZENG Jimin, XIAO Rui, ZENG Dewang, et al. High H2/CO ratio syngas production from chemical looping gasification of sawdust in a dualfluidized bed gasifier[J]. Energy & Fuels, 2015, 30(3): 1764-1770. |
2 | WU Hsuan-Chih, Young KU, et al. Chemical looping gasification of charcoal with iron-based oxygen carriers in an annular dual-tube moving bed reactor[J]. Aerosol and Air Quality Research, 2016, 16(4): 1093-1103. |
3 | LIU Guicai, LIAO Yanfen, WU Yuting, et al. Characteristics of microalgae gasification through chemical looping in the presence of steam[J]. International Journal of Hydrogen Energy, 2017, 42(36): 22730-22742. |
4 | 程煜, 刘永卓, 田红景, 等. 铁基复合载氧体煤化学链气化反应特性及机理[J]. 化工学报, 2013, 64(7): 2587-2595. |
CHENG Yu, LIU Yongzhuo, TIAN Hongjing, et al. Chemical-looping gasification reaction characteristics and mechanism of coaland Fe-based composite oxygen carriers[J]. CIESC Journal, 2013, 64(7): 2587-2595. | |
5 | 燕希敏, 苗鹏, 常国璋, 等. Fe/赤泥催化水蒸气气化煤焦的反应性与微结构特性[J]. 化工进展, 2018, 37(5): 1753-1759. |
YAN Ximin, MIAO Peng, CHANG Guozhang, et al. Characteristics of microstructures and reactivities during steam gasification of coal char catalyzed by red mud[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1753-1759. | |
6 | 杨明明, 刘永卓, 胡修德, 等. Fe2O3/ATP载氧体制备及煤化学链燃烧性能研究[J]. 燃料化学学报, 2015, 43(2): 167-176. |
YANG Mingming, LIU Yongzhuo, HU Xiude, et al. Preparation and performance of the Fe2O3/ATP oxygen carriers in coal chemical looping combustion[J]. Journal of Fuel Chemistry and Technology, 2015, 43(2): 167-176. | |
7 | 贾伟华, 胡修德, 刘永卓, 等. Ca-Fe/膨润土载氧体煤化学链燃烧反应特性[J]. 燃料化学学报, 2014, 42(9): 1060-1067. |
JIA Weihua, HU Xiude, LIU Yongzhuo, et al. Reactivity of Ca-Fe/膨润土 oxygen carrier in coal chemical-looping combustion[J]. Journal of Fuel Chemistry and Technology, 2014, 42(9): 1060-1067. | |
8 | LINDERHOLM C, CUADRAT A, LYNGFELT A. Chemical-looping combustion of solid fuels in a 10kWth pilot-batch tests with five fuels[C]// GALE J, HENDRIKS C, TURKENBERG W. 10th International Conference on Greenhouse Gas Control Technologies. Amsterdam, Netherlands: Energy Procedia, 2011: 385-392. |
9 | HAUS J, LYU K, HARTGE E, et al. Analysis of a two-stage fuel reactor system for the chemical-looping combustion of lignite and bituminous coal[J]. Energy Technology, 2016, 4(10): 1263-1273. |
10 | WANG Kun, ZHAO Haibo, TIAN Haibo, et al. Chemical-looping with oxygen uncoupling of different coals using copper ore as an oxygen carrier[J]. Energy & Fuels, 2015, 29(10): 6625-6635. |
11 | MEI Daofeng, ZHAO Haibo, MA Zhaojun, et al. Using the sol-gel-derived CuO/CuAl2O4 oxygen carrier in chemical looping with oxygen uncoupling for three typical coals[J]. Energy & Fuels, 2013, 27(5): 2723-2731. |
12 | MENDIARA T, DE DIEGO L F, GARCÍA-LABIANO F, et al. On the use of a highly reactive iron ore in chemical looping combustion of different coals[J]. Fuel, 2014, 126: 239-249. |
13 | NIE Baisheng, LIU Xianfeng, YANG Longlong, et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel, 2015, 158: 908-917. |
14 | BAI Boyang, GUO Qingjie, LI Yankun, et al. Catalytic gasification of crushed coke and changes of structural characteristics[J]. Energy & Fuels, 2018, 32(3): 3356-3367. |
15 | CHANG Guozhang, YAN Ximin, QI Pengyu, et al. Characteristics of reactivity and structures of Palm Kernel Shell (PKS) biochar during CO2/H2O mixture gasification[J]. Chinese Journal of Chemical Engineering, 2018, 26(10): 2153-2161. |
16 | CHANG Guozhang, XIE Jianjun, HUANG Yanqin, et al. Gasification reactivity and pore structure development: effect of intermittent addition of steam on increasing reactivity of PKS biochar with CO2[J]. Energy & Fuels, 2017, 31(3): 2887-2895. |
17 | ZHANG Zili, YAO J G, BOOT-HANDFORD M E, et al. Pressurised chemical-looping combustion of an iron-based oxygen carrier: reduction kinetic measurements and modelling[J]. Fuel Processing Technology, 2018, 171: 205-214. |
18 | XIA Zhi, WANG Wenju, WANG Guoping. Study of the crystal structure effect and mechanism during chemical looping gasification of coal[J]. Journal of the Energy Institute, 2019, 92(5): 1284-1293. |
19 | GU Zhijun, XIANG Xu, FAN Guoli, et al. Facile synthesis and characterization of cobalt ferrite nanocrystals via a simple reduction-oxidation route[J]. The Journal of Physical Chemistry C, 2008, 112(47): 18459-18466. |
20 | ROBERTS D G, HARRIS D J, WALL T F. On the effects of high pressure and heating rate during coal pyrolysis on char gasification reactivity[J]. Energy & Fuels, 2003, 17(4): 887-895. |
21 | XIAO Rui, SONG Qilei, SONG Qilei, et al. Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier[J]. Combustion and Flame, 2010, 157(6): 1140-1153. |
22 | XIAO Rui, CHEN Liangyong, SAHA C, et al. Pressurized chemical-looping combustion of coal using an iron ore as oxygen carrier in a pilot-scale unit[J]. International Journal of Greenhouse Gas Control, 2012, 10: 363-373. |
23 | SAITO T, NAKAYAMA K, LIN Shiying, et al. Kinetics of char and catalyzed char gasification at high steam partial pressures with or without H2 for chemical looping coal combustion[J]. Journal of Chemical Engineering of Japan, 2017, 50(7): 554-560. |
24 | 阎琪轩, 王建飞, 黄戒介, 等. 加压下氢气对煤焦水蒸气气化反应的影响[J]. 燃料化学学报, 2014, 42(9): 1033-1039. |
YAN Qixuan, WANG Jianfei, HUANG Jiejie, et al. Effect of H2 on coal-char gasification reaction with steam under pressure[J]. Journal of Fuel Chemistry and Technology, 2014, 42(9): 1033-1039. | |
25 | FERRARI C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20): 14095-14107. |
26 | JAWHARI T, ROID A, CASADO J, et al. Raman spectroscopic characterization of some commercially available carbon black materials[J]. Carbon, 1995, 33(11): 1561-1565. |
27 | MATTHEWS M J, PIMENTA M A. Origin of dispersive effects of the Raman D band in carbon materials[J]. Physical Review B, 1999, 59(10): 6585-6588. |
28 | LI Yang, YANG Haiping, HU Junhao, et al. Effect of catalysts on the reactivity and structure evolution of char in petroleum coke steam gasification[J]. Fuel, 2014, 117: 1174-1180. |
29 | KLOSE W, WOLKI M, et al. On the intrinsic reaction rate of biomass char gasification with carbon dioxide and steam[J]. Fuel, 2005, 84(7/8): 885-892. |
30 | MALEKSHAHIAN M, HILL J M. Effect of pyrolysis and CO2 gasification pressure on the surface area and pore size distribution of petroleum coke[J]. Energy & Fuels, 2011, 25(11): 5250-5256. |
31 | GOUWS S M, NEOMAGUS H W J P, ROBERTS D G, et al. The effect of carbon dioxide partial pressure on the gasification rate and pore development of highveld coal chars at elevated pressures[J]. Fuel Processing Technology, 2018, 179: 1-9. |
32 | WU Shiyong, GU Jing, LI Li, et al. The reactivity and kinetics of Yanzhou coal chars from elevated pyrolysis temperatures during gasification in steam at 900-1200℃[J]. Process Safety and Environmental Protection, 2006, 84(6): 420-428. |
[1] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[2] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[3] | WANG Peng, ZHANG Yang, FAN Bingqiang, HE Dengbo, SHEN Changshuai, ZHANG Hedong, ZHENG Shili, ZOU Xing. Process and kinetics of hydrochloric acid leaching of high-carbon ferrochromium [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 510-517. |
[4] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
[5] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[6] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[7] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[8] | WANG Baowen, LIU Tongqing, ZHANG Gang, LI Weiguang, LIN Deshun, WANG Mengjia, MA Jingjing. Reaction characteristics of CuFe2O4 modified desulfurization slag oxygen carrier with lignite [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2884-2894. |
[9] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[10] | TIAN Yuan, LOU Shujie, MENG Shanru, YAN Jingru, XIAO Haicheng. Recent progress of Co-based catalysts for higher alcohols synthesis form syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1869-1876. |
[11] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[12] | GONG Chenjun, MEI Daofeng. Effects of tungsten decoration on the performance of a Ni-based oxygen carrier during chemical looping reforming of biogas for hydrogen generation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2130-2141. |
[13] | FAN Yunpei, JIN Jing, LIU Dunyu, WANG Jingjie, LIU Qiuqi, XU Kailong. Mercury removal by CaSO4 oxygen carrier during in-situ gasification and chemical-looping combustion of coal [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1638-1648. |
[14] | LI Yun, CUI Nan, XIONG Xingxing, HUANG Zhiyuan, WANG Dongliang, XU Dan, LI Jun, LI Zebing. Influence of rare earth element Er(Ⅲ) on performance of short-cut nitrification and its inhibition kinetics [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1659-1668. |
[15] | WANG Wei, ZHANG Dongxu, LI Zunzhao, WANG Xiaolin, HUANG Qiyu. Research progress on the growth behavior of hydrates in water-in-oil emulsion systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1155-1166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |