Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 1085-1096.DOI: 10.16085/j.issn.1000-6613.2020-0700
• Resources and environmental engineering • Previous Articles Next Articles
Received:
2020-04-28
Revised:
2020-06-01
Online:
2021-02-09
Published:
2021-02-05
Contact:
Wenliang HAN
通讯作者:
韩文亮
作者简介:
韩文亮(1980—),男,博士,讲师,研究方向为环境污染及其防治。E-mail:基金资助:
CLC Number:
Wenliang HAN, Yu LIU. Spatiotemporal differentiation of total organic carbon and black carbon in sediments of urban water source reservoir and its inflowing river: impacts on polybrominated diphenyl ethers[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1085-1096.
韩文亮, 刘豫. 城市水源水库及入库河流沉积物中总有机碳和黑碳的时空分异及其对多溴二苯醚的影响[J]. 化工进展, 2021, 40(2): 1085-1096.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0700
项目 | Pearson 相关系数 | P | Spearman 相关系数 | P |
---|---|---|---|---|
入库河流 | -0.566 | 0.320 | -0.500 | 0.391 |
水库总体 | 0.222 | 0.276 | 0.196 | 0.338 |
水库丰水期 | -0.054 | 0.899 | -0.310 | 0.456 |
水库枯水期 | 0.449 | 0.226 | 0.533 | 0.139 |
水库平水期 | -0.113 | 0.772 | -0.133 | 0.732 |
项目 | Pearson 相关系数 | P | Spearman 相关系数 | P |
---|---|---|---|---|
入库河流 | -0.566 | 0.320 | -0.500 | 0.391 |
水库总体 | 0.222 | 0.276 | 0.196 | 0.338 |
水库丰水期 | -0.054 | 0.899 | -0.310 | 0.456 |
水库枯水期 | 0.449 | 0.226 | 0.533 | 0.139 |
水库平水期 | -0.113 | 0.772 | -0.133 | 0.732 |
项目 | 水文期 | 入库区 | 库尾区 | 库中区 | 坝前区 |
---|---|---|---|---|---|
TOC/mg?g-1 | 丰水期 | 19.08 | 15.15 | 17.48 | 14.08 |
枯水期 | 16.26 | 15.96 | 15.34 | 16.77 | |
平水期 | 13.55 | 10.92 | 12.56 | 13.24 | |
BC/mg?g-1 | 丰水期 | 3.25 | 3.33 | 4.72 | 4.58 |
枯水期 | 3.08 | 2.97 | 3.72 | 3.80 | |
平水期 | 3.30 | 3.13 | 3.39 | 3.30 | |
ΣPBDEs/ng?g-1 | 丰水期 | 538.19 | 104.47 | 192.66 | 27.51 |
枯水期 | 378.12 | 166.40 | 77.62 | 165.28 | |
平水期 | 498.03 | 123.76 | 607.29 | 175.11 |
项目 | 水文期 | 入库区 | 库尾区 | 库中区 | 坝前区 |
---|---|---|---|---|---|
TOC/mg?g-1 | 丰水期 | 19.08 | 15.15 | 17.48 | 14.08 |
枯水期 | 16.26 | 15.96 | 15.34 | 16.77 | |
平水期 | 13.55 | 10.92 | 12.56 | 13.24 | |
BC/mg?g-1 | 丰水期 | 3.25 | 3.33 | 4.72 | 4.58 |
枯水期 | 3.08 | 2.97 | 3.72 | 3.80 | |
平水期 | 3.30 | 3.13 | 3.39 | 3.30 | |
ΣPBDEs/ng?g-1 | 丰水期 | 538.19 | 104.47 | 192.66 | 27.51 |
枯水期 | 378.12 | 166.40 | 77.62 | 165.28 | |
平水期 | 498.03 | 123.76 | 607.29 | 175.11 |
BDE | TOC | BC | ||||
---|---|---|---|---|---|---|
丰水期 | 枯水期 | 平水期 | 丰水期 | 枯水期 | 平水期 | |
Tri-BDE | -0.292 | 0.207 | 0.409 | -0.368 | -0.105 | 0.457 |
P | 0.483 | 0.594 | 0.274 | 0.369 | 0.787 | 0.217 |
Tetra-BDE | 0.731① | 0.247 | 0.455 | -0.503 | -0.176 | 0.561 |
P | 0.039 | 0.521 | 0.219 | 0.204 | 0.650 | 0.116 |
Penta-BDE | -0.039 | 0.341 | 0.307 | -0.200 | 0.070 | 0.073 |
P | 0.927 | 0.369 | 0.422 | 0.634 | 0.857 | 0.852 |
Hexa-BDE | 0.607 | -0.037 | -0.319 | -0.601 | 0.371 | 0.099 |
P | 0.111 | 0.924 | 0.402 | 0.115 | 0.326 | 0.800 |
Hepta-BDE | 0.209 | 0.027 | -0.349 | -0.310 | 0.316 | 0.015 |
P | 0.620 | 0.945 | 0.357 | 0.455 | 0.408 | 0.969 |
Octa-BDE | 0.139 | -0.023 | 0.126 | -0.420 | 0.370 | 0.160 |
P | 0.743 | 0.953 | 0.748 | 0.301 | 0.327 | 0.680 |
Nona-BDE | 0.637 | 0.138 | 0.602 | -0.366 | -0.024 | 0.483 |
P | 0.090 | 0.722 | 0.086 | 0.373 | 0.951 | 0.187 |
Deca-BDE | 0.785① | 0.203 | 0.558 | -0.394 | -0.043 | 0.516 |
P | 0.021 | 0.601 | 0.118 | 0.335 | 0.913 | 0.155 |
ΣPBDEs | 0.784① | 0.202 | 0.558 | -0.395 | -0.040 | 0.516 |
P | 0.021 | 0.601 | 0.119 | 0.333 | 0.918 | 0.155 |
BDE | TOC | BC | ||||
---|---|---|---|---|---|---|
丰水期 | 枯水期 | 平水期 | 丰水期 | 枯水期 | 平水期 | |
Tri-BDE | -0.292 | 0.207 | 0.409 | -0.368 | -0.105 | 0.457 |
P | 0.483 | 0.594 | 0.274 | 0.369 | 0.787 | 0.217 |
Tetra-BDE | 0.731① | 0.247 | 0.455 | -0.503 | -0.176 | 0.561 |
P | 0.039 | 0.521 | 0.219 | 0.204 | 0.650 | 0.116 |
Penta-BDE | -0.039 | 0.341 | 0.307 | -0.200 | 0.070 | 0.073 |
P | 0.927 | 0.369 | 0.422 | 0.634 | 0.857 | 0.852 |
Hexa-BDE | 0.607 | -0.037 | -0.319 | -0.601 | 0.371 | 0.099 |
P | 0.111 | 0.924 | 0.402 | 0.115 | 0.326 | 0.800 |
Hepta-BDE | 0.209 | 0.027 | -0.349 | -0.310 | 0.316 | 0.015 |
P | 0.620 | 0.945 | 0.357 | 0.455 | 0.408 | 0.969 |
Octa-BDE | 0.139 | -0.023 | 0.126 | -0.420 | 0.370 | 0.160 |
P | 0.743 | 0.953 | 0.748 | 0.301 | 0.327 | 0.680 |
Nona-BDE | 0.637 | 0.138 | 0.602 | -0.366 | -0.024 | 0.483 |
P | 0.090 | 0.722 | 0.086 | 0.373 | 0.951 | 0.187 |
Deca-BDE | 0.785① | 0.203 | 0.558 | -0.394 | -0.043 | 0.516 |
P | 0.021 | 0.601 | 0.118 | 0.335 | 0.913 | 0.155 |
ΣPBDEs | 0.784① | 0.202 | 0.558 | -0.395 | -0.040 | 0.516 |
P | 0.021 | 0.601 | 0.119 | 0.333 | 0.918 | 0.155 |
1 | HAN Wenliang, FAN Tao, XU Binhua, et al. Passive sampling of polybrominated diphenyl ethers in indoor and outdoor air in Shanghai, China: seasonal variations, sources, and inhalation exposure[J]. Environmental Science and Pollution Research, 2016, 23(6): 5771-5781. |
2 | 韩文亮, 陈海明, 董娟娟. 电脑散热风扇灰尘中多溴二苯醚的污染特征和环境健康风险评价[J]. 环境科学学报, 2020, 40(9): 3190-3203. |
HAN Wenliang, CHEN Haiming, DONG Juanjuan. Contamination characteristics and environmental health risk assessment of polybrominated diphenyl ethers in dust from cooling fans in computers[J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3190-3203. | |
3 | 韩文亮, 刘豫, 冯凯文. 泉州山美水库及入库河流沉积物中多溴二苯醚的时空分异和降解分析[J]. 环境科学, 2020, 41(10): 4525-4538. |
HAN Wenliang, LIU Yu, FENG Kaiwen. Spatiotemporal differentiation and degradation analysis of polybrominated diphenyl ethers in sediments of Shanmei Reservoir and its inflowing river, Quanzhou, China[J]. Environmental Science, 2020, 41(10): 4525-4538. | |
4 | GUO Jiehong, LI Zhuona, RANASINGHE P, et al. Halogenated flame retardants in sediments from the Upper Laurentian Great Lakes: Implications to long-range transport and evidence of long-term transformation[J]. Journal of Hazardous Materials, 2020, 384: 121346. |
5 | ALI U, MAHMOOD A, SYED J H, et al. Assessing the combined influence of TOC and black carbon in soil-air partitioning of PBDEs and DPs from the Indus River Basin, Pakistan[J]. Environmental Pollution, 2015, 201: 131-140. |
6 | SUN Ke, ZHAO Ye, GAO Bo, et al. Organochlorine pesticides and polybrominated diphenyl ethers in irrigated soils of Beijing, China: levels, inventory and fate[J]. Chemosphere, 2009, 77(9): 1199-1205. |
7 | CHENG Bo, PENG Fengjiao, LIU Qiaorong, et al. Nationwide assessment of persistent halogenated compounds (PHCs) in farmed golden pompano of China[J]. Food Chemistry, 2020, 313: 126135. |
8 | GAYLORD A, OSBORNE G, GHASSABIAN A, et al. Trends in neurodevelopmental disability burden due to early life chemical exposure in the USA from 2001 to 2016: a population-based disease burden and cost analysis[J]. Molecular and Cellular Endocrinology, 2020, 502: 110666. |
9 | 韩文亮, 郑小燕. 十溴二苯醚及其降解产物对浮游生物的毒性[J]. 环境科学学报, 2018, 38(2): 821-828. |
HAN Wenliang, ZHENG Xiaoyan. Toxicity of decabromodiphenyl ether and its degradation products to plankton[J]. Acta Scientiae Circumstantiae, 2018, 38(2): 821-828. | |
10 | 韩文亮, 陈海明. 蒙脱石搭载纳米Ni-Fe超声降解十溴二苯醚[J]. 化工进展, 2018, 37(1): 350-358. |
HAN Wenliang, CHEN Haiming. Ultrasound enhanced degradation of decabromodiphenyl ether by montmorillonite supported Ni-Fe nanoparticles[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 350-358. | |
11 | CHEN Juan, GAO Han, WANG Peifang, et al. Effects of decabromodiphenyl ether on activity, abundance, and community composition of phosphorus mineralizing bacteria in eutrophic lake sediments[J]. Science of the Total Environment, 2019, 695: 133785. |
12 | DONG Shipei, LI Zhuolun, CHEN Qiujie, et al. Total organic carbon and its environmental significance for the surface sediments in groundwater recharged lakes from the Badain Jaran Desert, northwest China[J]. Journal of Limnology, 2018, 77(1): 121-129. |
13 | SUBDIAGA E, ORSETTI S, HADERLEIN S B. Effects of sorption on redox properties of natural organic matter[J]. Environmental Science & Technology, 2019, 53(24): 14319-14328. |
14 | LIU Rui, MA Teng, QIU Wenkai, et al. Effects of Fe oxides on organic carbon variation in the evolution of clayey aquitard and environmental significance[J]. Science of the Total Environment, 2020, 701: 134776. |
15 | MOON Hyo-Bang, CHOI Minkyu, YU Jun, et al. Contamination and potential sources of polybrominated diphenyl ethers (PBDEs) in water and sediment from the artificial Lake Shihwa, Korea[J]. Chemosphere, 2012, 88(7): 837-843. |
16 | BONE S E, CLIFF J, WEAVER K, et al. Complexation by organic matter controls uranium mobility in anoxic sediments[J]. Environmental Science & Technology, 2020, 54(3): 1493-1502. |
17 | SANTIN G, ELJARRAT E, BARCELO D. Bioavailability of classical and novel flame retardants: effect of fullerene presence[J]. Science of the Total Environment, 2016, 565: 299-305. |
18 | LIU Dan, WU Shengmin, ZHANG Qin, et al. Occurrence, spatial distribution, and ecological risks of typical hydroxylated polybrominated diphenyl ethers in surface sediments from a large freshwater lake of China[J]. Environmental Science and Pollution Research, 2017, 24(6): 5773-5780. |
19 | 李敏, 成杭新, 李括. 中国淡水湖泊沉积物地球化学背景与环境质量基准建立的思考[J]. 地学前缘, 2018, 25(4): 276-284. |
LI Min, CHENG Hangxin, LI Kuo. Geochemical background of freshwater lake sediments: a constraint on the establishment of sediment quality guidelines in China[J]. Earth Science Frontiers, 2018, 25(4): 276-284. | |
20 | LIAN Fei, XING Baoshan. Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk[J]. Environmental Science & Technology, 2017, 51(23): 13517-13532. |
21 | YU Pengfei, TOON O B, BARDEEN C G, et al. Black carbon lofts wildfire smoke high into the stratosphere to form a persistent plume[J]. Science, 2019, 365(6453): 587-590. |
22 | KLIMONT Z, KUPIAINEN K, HEYES C, et al. Global anthropogenic emissions of particulate matter including black carbon[J]. Atmospheric Chemistry and Physics, 2017, 17(14): 8681-8723. |
23 | ALI U, SWEETMAN A J, RIAZ R, et al. Sedimentary black carbon and organochlorines in Lesser Himalayan Region of Pakistan: relationship along the altitude[J]. Science of the Total Environment, 2018, 621: 1568-1580. |
24 | SÁNCHEZ-GARCÍA L, DE ANDRÉS J R, GÉLINAS Y, et al. Different pools of black carbon in sediments from the Gulf of Cádiz (SW Spain): method comparison and spatial distribution[J]. Marine Chemistry, 2013, 151: 13-22. |
25 | ALI U, BAJWA A, CHAUDHRY M J I, et al. Significance of black carbon in the sediment-water partitioning of organochlorine pesticides (OCPs) in the Indus River, Pakistan[J]. Ecotoxicology and Environmental Safety, 2016, 126: 177-185. |
26 | JIA Fang, LIAO Chunyang, XUE Jiaying, et al. Comparing different methods for assessing contaminant bioavailability during sediment remediation[J]. Science of the Total Environment, 2016, 573: 270-277. |
27 | YANG Weifeng, GUO Laodong. Sources and burial fluxes of soot black carbon in sediments on the Mackenzie, Chukchi, and Bering Shelves[J]. Continental Shelf Research, 2018, 155: 1-10. |
28 | YANG Yaning, SHENG Guangyao. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns[J]. Environ. Sci. Technol., 2003, 37(16): 3635-3639. |
29 | NGUYEN T H, BROWN R A, BALL W P. An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment[J]. Organic Geochemistry, 2004, 35(3): 217-234. |
30 | ZHU Baotong, XIA Xinghui, WU Shan, et al. Microbial bioavailability of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in natural sediments from major rivers of China[J]. Chemosphere, 2016, 153: 386-393. |
31 | BRODOWSKI S, JOHN B, FLESSA H, et al. Aggregate-occluded black carbon in soil[J]. European Journal of Soil Science, 2006, 57(4): 539-546. |
32 | BONINA S M C, CODLING G, CORCORAN M B, et al. Temporal and spatial differences in deposition of organic matter and black carbon in Lake Michigan sediments over the period 1850—2010[J]. Journal of Great Lakes Research, 2018, 44(4): 705-715. |
33 | WALKER X J, BALTZER J L, CUMMING S G, et al. Increasing wildfires threaten historic carbon sink of boreal forest soils[J]. Nature, 2019, 572(7770): 520-523. |
34 | NOVAKOV T, ANDREAE M O, GABRIEL R, et al. Origin of carbonaceous aerosols over the tropical Indian Ocean: biomass burning or fossil fuels?[J]. Geophysical Research Letters, 2000, 27(24): 4061-4064. |
35 | FANG Yin, CHEN Yingjun, TIAN Chongguo, et al. Application of PMF receptor model merging with PAHs signatures for source apportionment of black carbon in the continental shelf surface sediments of the Bohai and Yellow Seas, China[J]. Journal of Geophysical Research-Oceans, 2016, 121(2): 1346-1359. |
36 | ZHOU Peng, LIN Kuangfei, ZHOU Xiaoyu, et al. Distribution of polybrominated diphenyl ethers in the surface sediments of the Taihu Lake, China[J]. Chemosphere, 2012, 88(11): 1375-1382. |
37 | WEI Liangfu, TADESSE A W, WANG Jun. Organohalogenated contaminants (OHCs) in surface sediments and water of East Dongting Lake and Hong Lake, China[J]. Archives of Environmental Contamination and Toxicology, 2019, 76(2): 157-170. |
38 | 林田, 方引, 陈颖军, 等. 东海内陆架沉积物中黑碳分布及其与持久性有机污染物的相关性研究[J]. 环境科学, 2012, 33(7): 2335-2340. |
LIN Tian, FANG Yin, CHEN Yingjun. et al. Distribution of black carbon in the surface sediments of the East China Sea and their correlations with persistent organic pollutants[J]. Environmental Science, 2012, 33(7): 2335-2340. | |
39 | HONG Qingquan, WANG Yun, LUO Xiaojun, et al. Occurrence of polychlorinated biphenyls (PCBs) together with sediment properties in the surface sediments of the Bering Sea, Chukchi Sea and Canada Basin[J]. Chemosphere, 2012, 88(11): 1340-1345. |
40 | YU Bingsong, DONG Hailiang, JIANG Hongchen, et al. The role of clay minerals in the preservation of organic matter in sediments of Qinghai Lake, NW China[J]. Clays and Clay Minerals, 2009, 57(2): 213-226. |
41 | KANDASAMY S, LIN Baozhi, LOU Jiann-Yuh, et al. Estimation of marine versus terrigenous organic carbon in sediments off southwestern Taiwan using the bromine to total organic carbon ratio as a proxy[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(10): 3387-3402. |
42 | YANG Yaning, MAHLER B J, METRE P C VAN, et al. Potential contributions of asphalt and coal tar to black carbon quantification in urban dust, soils, and sediments[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6830-6840. |
43 | SULLIVAN J, BOLLINGER K, CAPRIO A, et al. Enhanced sorption of PAHs in natural-fire-impacted sediments from Oriole Lake, California[J]. Environmental Science & Technology, 2011, 45(7): 2626-2633. |
44 | CRANE J L. Source apportionment and distribution of polycyclic aromatic hydrocarbons, risk considerations, and management implications for urban stormwater pond sediments in Minnesota, USA[J]. Archives of Environmental Contamination and Toxicology, 2014, 66(2): 176-200. |
45 | BUCKLEY D R, ROCKNE K J, LI An, et al. Soot deposition in the Great Lakes: implications for semi-volatile hydrophobic organic pollutant deposition[J]. Environmental Science & Technology, 2004, 38(6): 1732-1739. |
46 | MOERMOND C T A, ZWOLSMAN J J G, KOELMANS A A. Black carbon and ecological factors affect in situ biota to sediment accumulation factors for hydrophobic organic compounds in flood plain lakes[J]. Environmental Science & Technology, 2005, 39(9): 3101-3109. |
47 | MURI G, CERMELJ B, FAGANELI J, et al. Black carbon in Slovenian alpine lacustrine sediments[J]. Chemosphere, 2002, 46(8): 1225-1234. |
48 | LI Feipeng, ZHANG Haiping, MENG Xiangzhou, et al. Contamination by persistent toxic substances in surface sediment of urban rivers in Chaohu City, China[J]. Journal of Environmental Sciences, 2012, 24(11): 1934-1941. |
49 | WANG Xuetong, CHEN Lei, WANG Xikui, et al. Occurrence, profiles, and ecological risks of polybrominated diphenyl ethers (PBDEs) in river sediments of Shanghai, China[J]. Chemosphere, 2015, 133: 22-30. |
50 | RICHMAN L A, KOLIC T, MACPHERSON K, et al. Polybrominated diphenyl ethers in sediment and caged mussels (Elliptio complanata) deployed in the Niagara River[J]. Chemosphere, 2013, 92(7): 778-786. |
51 | ILYAS M, SUDARYANTO A, SETIAWAN I E, et al. Characterization of polychlorinated biphenyls and brominated flame retardants in sediments from riverine and coastal waters of Surabaya, Indonesia[J]. Marine Pollution Bulletin, 2011, 62(1): 89-98. |
52 | MA Jie, XU Xiaoguang, YU Cencen, et al. Molecular biomarkers reveal co-metabolism effect of organic detritus in eutrophic lacustrine sediments[J]. Science of the Total Environment, 2020, 698: 134328. |
53 | 福建省情网. 泉州市志[EB/OL].[2020-4-3]. . |
54 | GANDHI N, GEWURTZ S B, DROUILLARD K G, et al. Polybrominated diphenyl ethers (PBDEs) in Great Lakes fish: levels, patterns, trends and implications for human exposure[J]. Science of the Total Environment, 2017, 576: 907-916. |
55 | ZHU Xifen, ZHONG Yin, WANG Heli, et al. New insights into the anaerobic microbial degradation of decabrominated diphenyl ether (BDE-209) in coastal marine sediments[J]. Environmental Pollution, 2019, 255: 113151. |
56 | YU Yuanyuan, YIN Hua, PENG Hui, et al. Biodegradation of decabromodiphenyl ether (BDE-209) using a novel microbial consortium GY1: cells viability, pathway, toxicity assessment, and microbial function prediction[J]. Science of the Total Environment, 2019, 668: 958-965. |
57 | LI Yuanyuan, LIN Tian, CHEN Yingjun, et al. Polybrominated diphenyl ethers (PBDEs) in sediments of the coastal East China Sea: occurrence, distribution and mass inventory[J]. Environmental Pollution, 2012, 171: 155-161. |
58 | TANG Zhenwu, HUANG Qifei, CHENG Jiali, et al. Polybrominated diphenyl ethers in soils, sediments, and human hair in a plastic waste recycling area: a neglected heavily polluted area[J]. Environmental Science & Technology, 2014, 48(3): 1508-1516. |
59 | XUE Chao, PENG Liang, TANG Jinping, et al. Screening the main factors affecting phthalate esters adsorption on soils, humic acid, and clay organo-mineral complexes[J]. Ecotoxicology and Environmental Safety, 2020, 190: 109143. |
60 | BARRETT T E, PONETTE-GONZALEZ A G, RINDY J E, et al. Wet deposition of black carbon: a synthesis[J]. Atmospheric Environment, 2019, 213: 558-567. |
61 | 王洋, 董长青. 生物质燃烧和热解中钾的释放规律研究进展[J]. 化工进展, 2020, 39(4): 1292-1301. |
WANG Yang, DONG Changqing. Release of K during biomass combustion and pyrolysis: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1292-1301. | |
62 | 王丰, 孔巧平, 周红桃, 等. 炭质吸附剂孔径分布与焦化废水有机组分分离的相关性[J]. 化工进展, 2018, 37(8): 3252-3259. |
WANG Feng, KONG Qiaoping, ZHOU Hongtao, et al. Correlation between pore-size distribution of carbonaceous sorbent and the separation of organic components in coking wastewater[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3252-3259. |
[1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[2] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[3] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[4] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[5] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[6] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[7] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[8] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[9] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[10] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[11] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[12] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[13] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[14] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[15] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |