1 |
HEMMATI A, RASHIDI H. Optimization of industrial intercooled post-combustion CO2 absorber by applying rate-base model and response surface methodology (RSM)[J]. Process Safety and Environmental Protection, 2019, 121: 77-86.
|
2 |
BAO W, ZHAO H, LI H, et al. Process simulation of mineral carbonation of phosphogypsum with ammonia under increased CO2 pressure[J]. Journal of CO2 Utilization, 2017, 17: 125-136.
|
3 |
ROLFE A, HUANG Y, HAAF M, et al. Integration of the calcium carbonate looping process into an existing pulverized coal-fired power plant for CO2 capture: techno-economic and environmental evaluation[J]. Applied Energy, 2018, 222: 169-179.
|
4 |
何卉, 方梦祥, 王涛, 等. 燃煤烟气化学吸收碳捕集系统分析与优化[J]. 化工进展, 2018, 37(6): 2406-2412.
|
|
HE H, FANG M X, WANG T, et al. Analysis and optimization of post-combustion CO2 capture system based on chemical absorption[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2406-2412.
|
5 |
WANG S, YAN S, MA X, et al. Recent advances in capture of carbon dioxide using alkali-metal-based oxides[J]. Energy & Environmental Science, 2011, 4(10): 3805-3819.
|
6 |
李小飞, 王淑娟, 陈昌和. 胺法脱碳系统再生能耗[J]. 化工学报, 2013, 64(9): 3348-3355.
|
|
LI X F, WANG S J, CHEN C H. Heat requirement for regeneration of a CO2 capture system using amine solutions[J]. CIESC Journal, 2013, 64(9): 3348-3355.
|
7 |
陆诗建, 高丽娟, 陆胤君, 等. 胺法捕集烟气中CO2热能综合利用研究[J]. 计算机与应用化学, 2018, 35(10): 843-854.
|
|
LU S J, GAO L J, LU Y J, et al. Comprehensive utilization of heat energy in CO2 capture process by MEA method[J]. Computers and Applied Chemistry, 2018, 35(10): 843-854.
|
8 |
SI Z, HAN D, SONG Y, et al. Experimental investigation on a combined system of vacuum membrane distillation and mechanical vapor recompression[J]. Chemical Engineering and Processing: Process Intensification, 2019, 139: 172-182.
|
9 |
YANG J, ZHANG C, ZHANG Z, et al. Electroplating wastewater concentration system utilizing mechanical vapor recompression[J]. Journal of Environmental Engineering, 2018, 144(7): 04018053.
|
10 |
董文虎, 孙玉堂, 陈光强, 等. MVR蒸发系统在淡盐水浓缩中的应用[J]. 氯碱工业, 2017, 53(1): 37-39.
|
|
DONG W H, SUN Y T, CHEN G Q, et al. Application of MVR evaporation system in concentration of depleted brine[J]. Chlor-Alkali Industry, 2017, 53(1): 37-39.
|
11 |
越云凯, 吴小华, 张振涛. MVR海水淡化系统运行特性分析与优化[J]. 工程热物理学报, 2018(9): 16.
|
|
YUE Y K, WU X H, ZHANG Z T. Operation characteristic analysis and optimization MVR seawaterer desaliation system[J]. Journal of Engineering Thermophysics, 2018(9): 16.
|
12 |
杨德明, 印一凡, 王争光, 等. 蒸发耦合精馏处理含盐甲醇废水的MVR节能工艺[J]. 化学工程, 2019(8): 16.
|
|
YANG D M, YIN Y F, WANG Z G, et al. MVR energy-saving technology for treatment of methanol wastewater containing salt based on evaporation coupling distillation[J]. Chemical Engineering (China), 2019(8): 16.
|
13 |
王帅, 张军. 机械蒸发再压缩(MVR)技术进展研究[J]. 节能, 2017, 36(11): 4-6.
|
|
WANG S, ZHANG J. Research progress of mechanical vapor recompression (MVR) technology[J]. Energy Conservation, 2017, 36(11): 4-6.
|
14 |
NAYAR K G, FERNANDES J, MCGOVERN R K, et al. Cost and energy needs of RO-ED-crystallizer systems for zero brine discharge seawater desalination[J]. Desalination, 2019, 457: 115-132.
|
15 |
LU S J, ZHAO D Y, ZHU Q M. CO2 absorber coupled with double pump CO2 capture technology for coal-fired flue gas[J]. Energy Procedia, 2018, 154: 163-170.
|
16 |
VOU-HARBOU I, IMLE M, HASSE H. Modeling and simulation of reactive absorption of CO2 with MEA: results for four different packings on two different scales[J]. Chemical Engineering Science, 2014, 105: 179-190.
|
17 |
FLØ N E, FARAMARZI L, IVERSEN F, et al. Assessment of material selection for the CO2 absorption process with aqueous MEA solution based on results from corrosion monitoring at Technology Centre Mongstad[J]. International Journal of Greenhouse Gas Control, 2019, 84: 91-110.
|
18 |
WANG T, HE H, YU W, et al. Process simulations of CO2 desorption in the interaction between the novel direct steam stripping process and solvents[J]. Energy & Fuels, 2017, 31(4): 4255-4262.
|
19 |
ZHANG M K, GUO Y C. Performance simulations of MEA and NH3 basedlarge-scale CO2 capture in packed columns under different flue gas parameters[J]. Korean Journal of Chemical Engineering, 2015, 32(8): 1477-1485.
|
20 |
SHARIFZADEH M, SHAH N. MEA-based CO2 capture integrated with natural gas combined cycle or pulverized coal power plants: operability and controllability through integrated design and control[J]. Journal of Cleaner Production, 2019, 207: 271-283.
|
21 |
LIU J. Investigation of energy-saving designs for an aqueous ammonia-based carbon capture process[J]. Industrial & Engineering Chemistry Research, 2018, 57(45): 15460-15472.
|
22 |
何卉. 二氧化碳化学吸收系统的工艺流程改进和集成优化研究[D]. 杭州: 浙江大学, 2018.
|
|
HE H. Study on the modification and integration of CO2 chemical absorption process [D]. Hangzhou: Zhejiang University, 2018.
|
23 |
GALINDO P, SCHAFFER A, BRECHTEL K, et al. Experimental research on the performance of CO2-loaded solutions of MEA and DEA at regeneration conditions[J]. Fuel, 2012, 101: 2-8.
|
24 |
陆诗建, 高丽娟, 王家凤, 等. 烟气CO2捕集热能梯级利用节能工艺耦合优化[J]. 化工进展, 2019, 38(2): 728-737.
|
|
LU S J, GAO L J, WANG J F, et al. Coupling optimization of energy-saving technology for cascade utilization of flue gas CO2 capture system[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 728-737.
|
25 |
涂巍巍, 方佳伟, 李竹石, 等. 基于MEA的CO2相变化吸收剂的开发[J]. 中国科学: 化学, 2018, 48(6): 641-647.
|
|
TU W W, FANG J W, LI Z S, et al. Development of MEA phase change absorbent[J]. Scientia Sinica (Chimica), 2018, 48(6): 641-647.
|
26 |
HONG H, LI W, GU C. Performance study on a mechanical vapor compression evaporation system driven by Roots compressor[J]. International Journal of Heat and Mass Transfer, 2018, 125: 343-349.
|