Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (11): 4991-4998.DOI: 10.16085/j.issn.1000-6613.2019-0200
• Materials science and technology • Previous Articles Next Articles
Wei WU(),Chang LI,Xu ZHANG,Lusheng XU,Chengqiang WU,Guoliang ZHANG(
)
Received:
2019-02-11
Online:
2019-11-05
Published:
2019-11-05
Contact:
Guoliang ZHANG
通讯作者:
张国亮
作者简介:
伍卫(1994—),女,硕士研究生,研究方向膜生物反应器。E-mail:基金资助:
CLC Number:
Wei WU,Chang LI,Xu ZHANG,Lusheng XU,Chengqiang WU,Guoliang ZHANG. Novel antifouling PVDF membrane with hydrophilic modification and its application in membrane bioreactor[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4991-4998.
伍卫,李畅,张旭,许炉生,吴成强,张国亮. 亲水改性PVDF膜材料及其膜生物反应器应用[J]. 化工进展, 2019, 38(11): 4991-4998.
改性方法 | 优点 | 缺点 |
---|---|---|
表面涂覆改性 | 工艺最简单,亲水改性效果好 | 亲水层稳定性不高,容易脱落,稳定性差 |
表面化学接枝改性 | 基团利用率较高,改性效果好,亲水稳定好 | 改性工艺过程复杂、接枝率较低 |
多功能纳米材料掺杂改性 | 无需预处理或后处理,容易规模化工业应用 | 相容性差,纳米材料易团聚 |
改性方法 | 优点 | 缺点 |
---|---|---|
表面涂覆改性 | 工艺最简单,亲水改性效果好 | 亲水层稳定性不高,容易脱落,稳定性差 |
表面化学接枝改性 | 基团利用率较高,改性效果好,亲水稳定好 | 改性工艺过程复杂、接枝率较低 |
多功能纳米材料掺杂改性 | 无需预处理或后处理,容易规模化工业应用 | 相容性差,纳米材料易团聚 |
改性膜 | 方法 | 接触角 /(°) | 应用 | 效果 | 参考 文献 |
---|---|---|---|---|---|
GO/PVDF | 无机材料掺杂 | 60.5 | 市政污水 | NH4+-N和COD去除率分别为93.75%、 87.33% | [ |
TiO2/PVDF | 无机材料掺杂 | 46.0 | 生物质能源生产 | 过滤阻力减少49%,藻类生物量6.5 g·m-2·d-1 | [ |
DOPA/PVDF | 表面涂覆 | 52.0 | 市政污水 | COD、NH4+-N和总氮(TN)去除效率分别保持在90%、98.8%和84.2%以上 | [ |
TiO2/PVDF | 表面化学接枝 | 43.9 | 工业废水 | 较低的通量下降,污泥过滤指数(I40)约是原膜的两倍 | [ |
PDMS/PVDF | 表面涂覆 | 116.0 | 工业废水 | 苯酚的总传质系数比现有的商用PDMS管状膜高4倍以上 | [ |
OCMCS-Fe3O4/PVDF | 无机材料掺杂 | — | 食品加工废水 | COD、TN和磷的去除效率为分别为92%~99%、52%和69% | [ |
改性膜 | 方法 | 接触角 /(°) | 应用 | 效果 | 参考 文献 |
---|---|---|---|---|---|
GO/PVDF | 无机材料掺杂 | 60.5 | 市政污水 | NH4+-N和COD去除率分别为93.75%、 87.33% | [ |
TiO2/PVDF | 无机材料掺杂 | 46.0 | 生物质能源生产 | 过滤阻力减少49%,藻类生物量6.5 g·m-2·d-1 | [ |
DOPA/PVDF | 表面涂覆 | 52.0 | 市政污水 | COD、NH4+-N和总氮(TN)去除效率分别保持在90%、98.8%和84.2%以上 | [ |
TiO2/PVDF | 表面化学接枝 | 43.9 | 工业废水 | 较低的通量下降,污泥过滤指数(I40)约是原膜的两倍 | [ |
PDMS/PVDF | 表面涂覆 | 116.0 | 工业废水 | 苯酚的总传质系数比现有的商用PDMS管状膜高4倍以上 | [ |
OCMCS-Fe3O4/PVDF | 无机材料掺杂 | — | 食品加工废水 | COD、TN和磷的去除效率为分别为92%~99%、52%和69% | [ |
1 | MENGF, ZHANGS, OH Y, et al. Fouling in membrane bioreactors: an updated review[J]. Water Research, 2017, 114: 151-180. |
2 | WANGG, FANZ, WUD, et al. Anoxic/aerobic granular active carbon assisted MBR integrated with nanofiltration and reverse osmosis for advanced treatment of municipal landfill leachate[J]. Desalination, 2014, 349: 136-144. |
3 | ZHANGG, QINL, MENGQ, et al. Aerobic SMBR/reverse osmosis system enhanced by Fenton oxidation for advanced treatment of old municipal landfill leachate[J]. Bioresource Technology, 2013, 142: 261-268. |
4 | QINL, ZHANGG, MENGQ, et al. Enhanced MBR by internal micro-electrolysis for degradation of anthraquinone dye wastewater[J]. Chemical Engineering Journal, 2012, 210: 575-584. |
5 | QINL, ZHANGG, MENGQ, et al. Enhanced submerged membrane bioreactor combined with biosurfactant rhamnolipids: performance for frying oil degradation and membrane fouling reduction[J]. Bioresource Technology, 2012, 126: 314-320. |
6 | QINL, ZHANGY, XUZ, et al. Advanced membrane bioreactors systems: new materials and hybrid process design[J]. Bioresource Technology, 2018, 269: 476-488. |
7 | 张松峰, 吴力立. 聚偏氟乙烯膜亲水改性研究进展[J]. 化工进展, 2016, 35(8): 2480-2487. |
ZHANGS F, WUL L. Research progress of hydrophilic modification of polyvinylidene fluoride[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2480-2487. | |
8 | XUZ, YES, ZHANGG, et al. Antimicrobial polysulfone blended ultrafiltration membranes prepared with Ag/Cu2O hybrid nanowires[J]. Journal of Membrane Science, 2016, 509: 83-93. |
9 | ZHANGG, LUS, ZHANGL, et al. Novel polysulfone hybrid ultrafiltration membrane prepared with TiO2-g-HEMA and its antifouling characteristics[J]. Journal of Membrane Science, 2013, 436: 163-173. |
10 | LIUF, AWANIS HASHIMN, LIUY, et al. Progress in the production and modification of PVDF membranes[J]. Journal of Membrane Science, 2011, 375(1/2): 1-27. |
11 | WANGJ, CHENY, CHENY, et al. Fabrication and characterization of superhydrophilic and antibacterial surfaces by silver nanoparticle self-assembly[J]. Colloid and Polymer Science, 2017, 295(11):2191-2196. |
12 | MAW, RAJABZADEHS, MATSUYAMAH. Preparation of antifouling poly(vinylidene fluoride) membranes via different coating methods using a zwitterionic copolymer[J]. Applied Surface Science, 2015, 357: 1388-1395. |
13 | XUL, HEY, FENGX, et al. A comprehensive description of the threshold flux during oil/water emulsion filtration to identify sustainable flux regimes for tannic acid (TA) dip-coated poly(vinylidene fluoride) (PVDF) membranes[J]. Journal of Membrane Science, 2018, 563: 43-53. |
14 | VENAULTA, CHANGY, YANGH, et al. Surface self-assembled zwitterionization of poly(vinylidene fluoride) microfiltration membranes via hydrophobic-driven coating for improved blood compatibility[J]. Journal of Membrane Science, 2014, 454: 253-263. |
15 | SHENX, YINX, ZHAOY, et al. Improved protein fouling resistance of PVDF membrane grafted with the polyampholyte layers[J]. Colloid and Polymer Science, 2015, 293(4): 1205-1213. |
16 | QINA, LIX, ZHAOX, et al. Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface[J]. ACS Applied Materials Interfaces, 2015, 7: 8427-8436. |
17 | ZHAOR J, WANGW S, ZHUF F, et al. Surface modification of PVDF membrane by simultaneously using low temperature plasma and ammonium carbonate solution[J]. Desalination Water Treatment, 2015, 56(9): 2276-2283. |
18 | ZHANGJ, WANGL, ZHANGG, et al. Influence of azo dye-TiO2 interactions on the filtration performance in a hybrid photocatalysis/ultrafiltration process[J]. Journal of Colloid and Interface Science, 2013, 389:273-283. |
19 | ZHANGG, ZHOUM, XUZ H. Guanidyl-functionalized graphene/polysulfone mixed matrix ultrafiltration membrane with superior permselective, antifouling and antibacterial properties for water treatment[J]. Journal of Colloid and Interface Science, 2019, 540:295-305. |
20 | ZHAOC, XUX, CHENJ, et al. Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system[J]. Desalination, 2014, 340: 59-66. |
21 | LVJ, ZHANGG, ZHANGH, et al. Graphene oxide-cellulose nanocrystal (GO-CNC) composite functionalized PVDF membrane with improved antifouling performance in MBR: behavior and mechanism[J]. Chemical Engineering Journal, 2018, 352: 765-773. |
22 | ZHANGJ, WANGZ, LIUM, et al. In-situ modification of PVDF membrane during phase-inversion process using carbon nanosphere sol as coagulation bath for enhancing anti-fouling ability[J]. Journal of Membrane Science, 2017, 526: 272-280. |
23 | JAVADIM, JAFARAZDEHY, YEGANIR, et al. PVDF membranes embedded with PVP functionalized nanodiamond for pharmaceutical wastewater treatment[J]. Chemical Engineering Research and Design, 2018, 140: 241-250. |
24 | LIJ, LIUX, LUJ, et al. Anti-bacterial properties of ultrafiltration membrane modified by graphene oxide with nano-silver particles[J]. Journal of Colloid and Interface Science, 2016, 484: 107-115. |
25 | LIJ, SHAOX, ZHOUQ, et al. The double effects of silver nanoparticles on the PVDF membrane: surface hydrophilicity and antifouling performance[J]. Applied Surface Science, 2013, 265: 663-670. |
26 | CHENM, ZHANGX, WANGZ, et al. QAC modified PVDF membranes: antibiofouling performance, mechanisms, and effects on microbial communities in an MBR treating municipal wastewater[J]. Water Research, 2017, 120: 256-264. |
27 | HUW, YINJ, DENGB, et al. Application of nano TiO2 modified hollow fiber membranes in algal membrane bioreactors for high-density algae cultivation and wastewater polishing[J]. Bioresource Technology, 2015, 193: 135-141. |
28 | SAFARPOURM, KHATAEEA, VATANPOURV. Effect of reduced graphene oxide/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes[J]. Separation and Purification Technology, 2015, 140: 32-42. |
29 | HOUF, LIB, XINGM, et al. Surface modification of PVDF hollow fiber membrane and its application in membrane aerated biofilm reactor (MABR) [J]. Bioresource Technology, 2013, 140: 1-9. |
30 | TAVAKOLMOGHADAMM, MONHAMMADT, HEMMATIM, et al. Surface modification of PVDF membranes by sputtered TiO2: fouling reduction potential in membrane bioreactors[J]. Desalination Water Treatment, 2014, 57(8): 3328-3338. |
31 | JINM Y, LIAOY, LOH C H, et al. Preparation of polydimethylsiloxane-polyvinylidene fluoride composite membranes for phenol removal in extractive membrane bioreactor[J]. Industrial Engineer Chemistry Research, 2017, 56: 3436-3445. |
32 | RAHIMIZ, ZINAYIZADEHA A, ZINADINIS. Milk processing wastewater treatment in a bioreactor followed by an antifouling O-carboxymethyl chitosan modified Fe3O4/PVDF ultrafiltration membrane[J]. Journal of Industrial and Engineering Chemistry, 2016, 38: 103-112. |
33 | FANZ, QINL, ZHENGW, et al. Oscillating membrane photoreactor combined with salt-tolerated chlorella pyrenoidosa for landfill leachates treatment[J]. Bioresource Technology, 2018, 269:134-142. |
34 | CHONGW, MAHMOUDIE, CHUNGY, et al. Improving performance in algal organic matter filtration using polyvinylidene fluoride-graphene oxide nanohybrid membranes[J]. Algal Research, 2017, 27: 32-42. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[3] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[4] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[5] | XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955. |
[6] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[7] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[8] | LU Shijian, LIU Miaomiao, YANG Fei, ZHANG Junjie, CHEN Siming, LIU Ling, KANG Guojun, LI Qingfang. Gas-liquid two-phase flow and mass transfer characteristics in an improved CO2 wet-wall column [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3457-3467. |
[9] | FENG Jianghan, SONG Fang. Research progress of anion exchange membrane water electrolysis cells [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3501-3509. |
[10] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[11] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[12] | LU Shaojie, LIU Jia, JI Qianzhu, LI Ping, HAN Yueyang, TAO Min, LIANG Wenjun. Preparation of diatomaceous earth-based composite filler and its xylene removal performance by a biotrickling filter [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3884-3892. |
[13] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[14] | SUN Luqin, LU Huixia, WANG Jianyou. Separation of lysozyme from egg white by electrodialysis with ultrafiltration membrane(EDUF) process [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2262-2271. |
[15] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 754
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 792
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |