[1] 徐惠斌, 胡自成, 宋新南, 等. 高浓度氯化锂水溶液沸腾换热特性实验[J]. 长春工业大学学报(自然科学版), 2012, 33(4):465-468. XU Huibin, HU Zicheng, SONG Xinnan, et al. Experiment study on the boiling heat transfer property of concentrated aqueous LiCl solution[J]. Journal of Changchun University of Technology(Natural Science Edition), 2012, 33(4):465-468. [2] 刘晓华, 李震, 张涛. 溶液除湿[M]. 北京:中国建筑工业出版社, 2014:4-7. LIU Xiaohua, LI Zhen, ZHANG Tao. Liquid desiccant dehumidification[M]. Beijing:China Architecture & Building Press, 2014:4-7. [3] 张润霞, 王赞社, 孟祥兆, 等. 溶液除湿中基于水蒸气压差的传质系数[J]. 化工学报, 2015, 66(12):4774-4779. ZHANG Runxia, WANG Zanshe, MENG Xiangzhao, et al. Mass transfer coefficient for liquid dehumidification based on vapor pressure difference[J]. CIESC Journal, 2015, 66(12):4774-4779. [4] 王沐, 殷勇高, 郭枭爽, 等. 经济型多元溶液的替代方案及除湿再生性能验证[J]. 化工学报, 2018, 69(s2):420-424. WANG Mu, YIN Yonggao, GUO Xiaoshuang, et al. Alternative scheme and dehumidification and regeneration performance validation for economic multi-component solution[J]. CIESC Journal, 2018, 69(s2):420-424. [5] 王琴, 吴薇, 刘松松, 等. 内热型与绝热型溶液再生器再生过程性能[J]. 化工学报, 2016, 67(s1):186-194. WANG Qin, WU Wei, LIU Songsong, et al. Performance of regeneration processes of internally heated regernerator and adiabatic regenerator[J]. CIESC Journal, 2016, 67(s1):186-194. [6] REN C Q, TU M, WANG H H. An analytical model for heat and mass transfer processes in internally cooled or heated liquid desiccant-air contact units[J]. International Journal of Heat and Mass Transfer, 2007, 50(17):3545-3555. [7] 殷勇高, 张小松, 李应林, 等. 蓄能型太阳能溶液除湿蒸发冷却空调系统研究[J]. 东南大学学报(自然科学版), 2005(1):73-76. YIN Yonggao, ZHANG Xiaosong, LI Yinglin, et al. Investigation of solar powered liquor desiccant evaporation cooling air conditioning system with energy storage[J]. Journal of Southeast University (Natural Science Edition), 2005(1):73-76. [8] 殷勇高, 李士强, 张小松. 绝热型和内热型再生过程热性能对比[J]. 化工学报, 2010, 61(s2):157-163. YIN Yonggao, LI Shiqiang, ZHANG Xiaosong. Comparative study on dynamic performance of internally heated and adiabatic regenerators[J]. CIESC Journal, 2010, 61(s2):157-163. [9] 成洁, 殷勇高, 张凡. 低品位热驱动混合溶液除湿降温系统性能分析[J]. 东南大学学报(自然科学版), 2019, 49(1):148-153. CHENG Jie, YIN Yonggao, ZHANG Fan. Performance analysis of liquid desiccant cooling system using mixed solution driven by low-grade heat source[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(1):148-153. [10] 周君明, 张小松, 孙博. 太阳能溶液除湿空调系统再生技术的研究进展与能耗分析[J]. 制冷学报, 2019, 40(2):154-160, 166. ZHOU Junming, ZHANG Xiaosong, SUN Bo. Research progress on regenerative technology and energy analysis of solar liquid desiccant air-conditioning system[J]. Journal of Regeneration, 201940(2):154-160, 166. [11] 王海峰, 张守兵, 董闪闪, 等. 太阳能-溴化锂溶液除湿-再生系统的实验研究[J]. 郑州大学学报(工学版), 2015, 36(5):49-52. WANG Haifeng, ZHANG Shoubing, DONG Shanshan, et al. Experimental study on solar energy dehumidification and regeneration system for lithium bromide solution[J]. Journal of Zhengzhou University(Natural Science Edition), 2015, 36(5):49-52. [12] 张昊, 申凯, 赖艳华, 等. 氯化钙溶液喷雾闪蒸再生特性模拟及试验分析[J]. 化工学报, 2019, 70(6):2269-2278. ZANG Hao, SHEN Kai, LAI Yanhua, et al. Simulation and experimental analysis in spray flash characteristicsof CaCl2 solution[J]. CIESC Journal, 2019, 70(6):2269-2278. [13] 徐惠斌, 宋新南, 葛凤华, 等. 常见液体除湿剂池内核态沸腾换热特性[J]. 化工学报, 2013, 64(4):1211-1216. XU Huibin, SONG Xinnan, GE Fenghua, et al. Pool nucleate boiling heat transfer of conventional desiccant solutions[J]. CIESC Journal, 2013, 64(4):1211-1216. [14] 徐惠斌, 宋新南, 葛凤华, 等. 常压下溴化锂水溶液沸腾换热特性实验研究[J]. 制冷学报, 2013, 34(3):56-59. XU Huibin, SONG Xinnan, GE Fenghua, et al. Experiment study of pool nucleate boiling heat transfer of aqueous LiBr solution at normal atmospheric pressure[J]. Journal of Regeneration, 2013, 34(3):56-59. [15] 弓仲恺, 裴清清. 溴化锂水溶液常压下沸腾再生实验研究[J]. 建筑热能通风空调, 2015, 34(2):26-28. GONG Zhongkai, PEI Qingqing. Experiment study of boiling regeneration of LiBr aqueous solution at normal atmospheric pressure[J]. Building Energy & Environment, 2015, 34(2):26-28. [16] MEZENTSEVA N N, MEZENTSEV I V. Peculiarities of determination of the heat transfer coefficient at boiling of non-azeotropic mixtures in tubes[J]. Journal of Physics:Conference Series, 2018, 1105(1):012047. [17] SHIN J Y, KIM M S, RO S T. Experimental study on forced convective boiling heat transfer of pure refrigerants and refrigerant mixtures in a horizontal tube[J]. Int. J. Refrig., 1997(20):267-275. [18] MASTRULLO R, MAURO A W, VISCITO L. Flow boiling of R452A:heat transfer data, dry-out characteristics and a correlation[J]. Experimental Thermal and Fluid Science, 2019(105):247-260. [19] MASTRULLO R, MAURO A W, MENNA L, et al. Replacement of R404A with propane in a light commercial vertical freezer:a parametric study of performances for different system architectures[J]. Energy Conversion and Management, 2014(82):54-60. [20] LILLO G, MASTRULLO R, MAURO A W, et al. Flow boiling of R32 in a horizontal stainless steel tube with 6.00 mm ID. Experiments, assessment of correlations and comparison with refrigerant R410A[J]. International Journal of Refrigeration, 2018, 97:143-156. [21] 王学东, 柳建华, 韩赛赛. R404A在小管径管内流动沸腾换热特性研究[J]. 制冷学报, 2018, 39(1):48-55. WANG Xuedong, LIU Jianhua, HAN Saisai. Study on flow boiling heat transfer characteristics of R404a in small-diameter tubes[J]. Journal of Refrigeration, 2018, 39(1):48-55. |