Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (06): 2784-2790.DOI: 10.16085/j.issn.1000-6613.2018-1786
• Industrial catalysis • Previous Articles Next Articles
Xiaohai LI1,2
Received:
2018-09-05
Online:
2019-06-05
Published:
2019-06-05
李小海1,2
作者简介:
李小海(1985—),男,副总工程师,研究方向为脱硝催化剂设计应用。E-mail: lixiaohai5613@163.com。
CLC Number:
Xiaohai LI. Study on low temperature SCR denitration of Cu doped phosphomolybdate catalyst[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2784-2790.
李小海. Cu掺杂磷钼杂多酸催化剂的低温SCR脱硝性能[J]. 化工进展, 2019, 38(06): 2784-2790.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1786
样品 | 结晶度/% |
---|---|
Cu(0)-HPMo/TiO2-350 | 58.95 |
Cu(0.5)-HPMo/TiO2-350 | 59.48 |
Cu(3)-HPMo/TiO2-350 | 62.18 |
Cu(4)-HPMo/TiO2-350 | 62.63 |
样品 | 结晶度/% |
---|---|
Cu(0)-HPMo/TiO2-350 | 58.95 |
Cu(0.5)-HPMo/TiO2-350 | 59.48 |
Cu(3)-HPMo/TiO2-350 | 62.18 |
Cu(4)-HPMo/TiO2-350 | 62.63 |
样品 | BET比表面积 /m2·g-1 | 孔容 /cm3·g-1 | 平均孔径 /nm |
---|---|---|---|
Cu(3)-HPMo/TiO2-300 | 81.44 | 0.48 | 20.34 |
Cu(3)-HPMo/TiO2-350 | 85.55 | 0.49 | 20.11 |
Cu(3)-HPMo/TiO2-450 | 69.64 | 0.49 | 22.39 |
样品 | BET比表面积 /m2·g-1 | 孔容 /cm3·g-1 | 平均孔径 /nm |
---|---|---|---|
Cu(3)-HPMo/TiO2-300 | 81.44 | 0.48 | 20.34 |
Cu(3)-HPMo/TiO2-350 | 85.55 | 0.49 | 20.11 |
Cu(3)-HPMo/TiO2-450 | 69.64 | 0.49 | 22.39 |
1 | LI G , WANG B , WANG H , et al . Fe and/or Mn oxides supported on fly ash-derived SBA-15 for low-temperature NH3-SCR[J]. Catalysis Communications, 2018, 108:82-87. |
2 | 李晨露,唐晓龙,易红宏,等 . Mn基低温SCR催化剂的抗H2O、抗SO2研究进展[J].化工进展,2017,36(3):934-943. |
LI C L , TANG X L , YI H H , et al . Research progress on H2O resistance and SO2 resistance of Mn based low-temperature SCR catalyst[J]. Chemical Industry and Engineering Progress, 2017,36(3):934-943. | |
3 | WANG J , QIU Y , HE S , et al . Investigating the driving forces of NO x generation from energy consumption in China[J]. Journal of Cleaner Production, 2018,184:836-846. |
4 | BARREAU M , TAROT M L , DUPREZ D , et al . Remarkable enhancement of the selective catalytic reduction of NO at low temperature by collaborative effect of ethanol and NH3 over silver supported catalyst[J]. Applied Catalysis B: Environmental, 2018,220:19-30. |
5 | ZHANG MH , HUANG B J , JIANG H X , et al . Research progress in the SO2 resistance of the catalysts for selective catalytic reduction of NO x [J]. Chinese Journal of Chemical Engineering, 2017,25(12):1695-1705. |
6 | 郭凤,余剑, Tuyet-Suong TRAN , 等 .溶胶-凝胶原位合成钒钨钛催化剂及NH3-SCR性能[J].化工学报,2017,68(10):3747-3754. |
GUO F , YU J , T-S TRAN , et al . In-situ synthesis of vanadium, tungsten, titanium and NH3-SCR by sol-gel catalyst[J]. CIESC J.,2017,68(10):3747-3754. | |
7 | ODENBRAND C U I . CaSO4 deactivated V2O5-WO3/TiO2 SCR catalyst for a diesel power plant. characterization and simulation of the kinetics of the SCR reactions[J]. Applied Catalysis B: Environmental,2018,234:365-377. |
8 | 黄金,仲兆平,朱林,等 .锰铈改性钒钨钛中低温SCR催化剂脱硝及抗水抗硫性能[J].化工进展,2018,37(6):2242-2248. |
HUANG J , ZHONG Z P , ZHU L , et al . Denitrification, water resistance Engineering sulfur resistance of low temperature SCR catalyst modified by Mn-cerium in vanadium, tungsten and titanium[J]. Chemical Industry and Engineering Progress, 2018,37(6):2242-2248. | |
9 | KOWALCZYK A , ŚWIĘS A , GIL B, et al . Effective catalysts for the low-temperature NH3-SCR process based on MCM-41 modified with copper by template ion-exchange (TIE) method[J]. Applied Catalysis B: Environmental, 2018,237:927-937. |
10 | WÖRLE-KNIRSCH J M , KERN K , SCHLEH C , et al . Nanoparticulate vanadium oxide potentiated vanadium toxicity in human lung cells[J]. Environmental Science & Technology, 2007,41(1):331-336. |
11 | 马景琦 . SCR催化剂的研究进展[J]. 科技资讯,2017(10):112-113. |
MA J Q . Research progress of SCR catalyst[J]. Science and Technology Information, 2017(10):112-113. | |
12 | LI M , GUO R , HU C , et al . The enhanced resistance to K deactivation of Ce/TiO2 catalyst for NH3-SCR reaction by the modification with P[J]. Applied Surface Science, 2018,436:814-822. |
13 | HU X , SHI Q , ZHANG H , et al . NH3-SCR performance improvement over Mo modified Mo(x)-MnO x nanorods at low temperatures[J]. Catalysis Today, 2017,297:17-26. |
14 | 史德明,陈光,张松,等 . 一种具有强抗硫抗水性能的低温脱硝催化剂及其制备方法: CN107088433A[P]. 2017-08-25. |
SHI D M , CHEN G , ZHANG S , et al . A low temperature denitrification catalyst with strong sulfur and water resistance and its preparation method:CN107088433A[P]. 2017-08-25. | |
15 | 张序,李建军,刘琪琪,等 . 炭基磷钨酸催化剂的脱硝性能[J]. 环境工程学报,2016(2):799-804. |
ZHANG X , LI J J , LIU Q Q , et al . Denitrification performance of carbon-based phosphotungstic acid catalyst[J]. Chinese Journal of Environmental Engineering, 2016(2):799-804. | |
16 | SUBBA R B V , NARASIMHULU G , SUBBA L P , et al . Phosphomolybdic acid: a highly efficient solid acid catalyst for the synthesis of trans-4,5-disubstituted cyclopentenones[J]. Tetrahedron Letters, 2012,53(14):1776-1779. |
17 | BHORODWAJ S K , DUTTA D K . Activated clay supported heteropoly acid catalysts for esterification of acetic acid with butanol[J]. Applied Clay Science, 2011, 53(2):347-352. |
18 | REN Z , TENG Y , ZHAO L , et al . Keggin-tungstophosphoric acid decorated Fe2O3 nanoring as a new catalyst for selective catalytic reduction of NO x with ammonia[J]. Catalysis Today, 2017,297:36-45. |
19 | WENG X , DAI X , ZENG Q , et al . DRIFT studies on promotion mechanism of H3PW12O40 in selective catalytic reduction of NO with NH3 [J]. Journal of Colloid and Interface Science, 2016,461:9-14. |
20 | 田青青 . 杂多酸负载二氧化铈的NO x 选择性催化还原应用研究[D]. 杭州:浙江大学,2014. |
TIAN Q Q . Application of NO x selective catalytic reduction of cerium dioxide supported by heteropoly acid[D]. Hangzhou: Zhejiang University,2014. | |
21 | HALASZ I , BRENNER A , SIMON K Y , et al . Catalytic activity and selectivity of H-ZSM5 for the reduction of nitric oxide by propane in the presence of oxygen[J]. Journal of Catalysis,1996, 161: 359-372. |
22 | 李晨旭 . Cu改性V/WTi催化剂低温NH3-SCR性能研究[D]. 天津:天津大学,2015. |
LI C X . Study on NH3-SCR properties of Cu modified V/WTi catalyst at low temperature[D]. Tianjin:Tianjin University, 2015. | |
23 | WU S , LI H , LI L , et al . Effects of flue-gas parameters on low temperature NO reduction over a Cu-promoted CeO2-TiO2 catalyst[J]. Fuel, 2015,159:876-882. |
24 | CHUAI H , ZHOU D , ZHU X , et al . Characterization of V2O5/MoO3 composite photocatalysts prepared via electrospinning and their photodegradation activity for dimethyl phthalate[J]. Chinese Journal of Catalysis, 2015,36:2194-2202. |
25 | SI Z , WENG D , WU X , et al . Structure, acidity and activity of CuO x /WO x -ZrO2 catalyst for selective catalytic reduction of NO by NH3 [J]. Journal of Catalysis, 2010,271(1):43-51. |
26 | KIM M H, PARK S W . Selective reduction of NO by NH3 over Fe-zeolite-promoted V2O5-WO3/TiO2-based catalysts: great suppression of N2O formation and origin of NO removal activity loss[J]. Catalysis Communications, 2016,86:82-85. |
27 | 任旭婷 . Mn-Ce/TiO2低温脱硝催化剂的制备及改性研究[D]. 北京:中国石油大学(北京),2016. |
REN X T . Preparation and modification of Mn-Ce /TiO2 low temperature denitrification catalyst[D]. Beijing: China University of Petroleum (Beijing), 2016. | |
28 | 陈勇 . TiO2负载Ce改性VPO催化剂的低温SCR脱硝性能研究[D]. 马鞍山:安徽工业大学,2017. |
CHEN Y . Study on low-temperature SCR denitrification performance of TiO2 supported Ce modified VPO catalyst[D]. Maanshan: Anhui University of Technology, 2017. | |
29 | DEVIKALA S , KAMARAJ P , ARTHANAREESWARI M . AC conductivity studies of PMMA/TiO2 composites[J].Materials Today:Proceedings, 2018,5(2):8678-8682. |
30 | YANG R , HUANG H , CHEN Y , et al . Performance of Cr-doped vanadia/titania catalysts for low-temperature selective catalytic reduction of NO x with NH3 [J]. Chinese Journal of Catalysis, 2015,36(8):1256-1262. |
31 | 万马,张先龙,郭亚晴,等 . 锰负载量对MnO x /PG 催化剂低温SCR反应的影响[J]. 环境工程学报,2016,10(10):5749-5754. |
WAN M , ZHANG X L , GUO Y Q , et al . Effect of manganese loading on low temperature SCR reaction of MnO x /PG catalyst[J]. Journal of Environmental Engineering, 2016, 10(10):5749-5754. | |
32 | PANG L , FAN C , SHAO L , et al . The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust[J]. Chemical Engineering Journal, 2014, 253:394-401. |
33 | YUAN J , YANG M , HU Q , et al . Cu/TiO2 nanoparticles modified nitrogen-doped graphene as a highly efficient catalyst for the selective electroreduction of CO2 to different alcohols[J]. Journal of CO2 Utilization, 2018,24:334-340. |
34 | GUAN B , LIN H , ZHU L , et al . Selective catalytic reduction of NO x with NH3 over Mn, Ce substitution Ti0.9V0.1O2- δ nanocomposites catalysts prepared by self-propagating high-temperature synthesis method[J]. The Journal of Physical Chemistry C, 2011, 115(26):12850-12863. |
35 | 王大文, 钟顺和 . 二氧化碳与丙烯直接合成甲基丙烯酸用CuPMo/TiO2催化剂的研究[J]. 催化学报, 2003, 24(9):705-710. |
WANG D W , ZHONG S H . CuPMo/TiO2 catalyst for the direct synthesis of acrylic acid from carbon dioxide and propylene[J]. Journal of Catalysis, 2003, 24(9):705-710. | |
36 | CHIRANJIT S , SNEHA S , ANIRUDDHA M , et al . Synthesis, characterization of VPO catalyst dispersed on mesoporous silica surface and catalytic activity for cyclohexane oxidation reaction[J]. Microporous and Mesoporous Materials, 2016, 223: 121-128. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[10] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |